The International Initiative Co-operation and Collaboration for Peaceful Uses of Nuclear Energy

“The International Initiative Co-operation and Collaboration for Peaceful Uses of Nuclear Energy”

Executive Summary

The Partitioning and Transmutation (P&T) option as an alternative Waste Management Strategy is examined in this papers along different lines. The International collaboration for advanced reactor and fuel cycle development such as INPRO and GIF also address in this papers together with the cooperation between INPRO and GIF to avoid overlapping. The global suggestion for peaceful uses of nuclear energy, such as MNA and GNEP also describe in this paper together with pros and cons. The last of this final term paper is the description on importance of promoting the Co-operation and Collaboration for Peaceful Uses of Nuclear Energy together with several recommendation for the international community to urgently address several issues.

1. The Role and Methodology  of  partitioning and transmutation (P&T) of spent fuel

The first approach is a global analysis of the present situation in the backend of the fuel cycle where it appears that two opposite concepts (direct disposal versus reprocessing and PU reuse) are equally important on the world scene. In order to allow P&T to be fully developed a doubling of the present conventional reprocessing capacity is required. The radioactive source term with long term implications is discussed and the relative importance of each of the long lived nuclides is quantified on the basis of their hazard index and its evaluation as a function of cooling time. The radiochemical and nuclear engineering data of Minor Actinides (MA) and Long Lived Fission Products (LLFP) show that, on the basis of their radio-toxicity indexes, the Pu 241 – Am 241 – Np 237 sequence has the greatest radiological impact followed by Am 243 as a precursor of Pu 239. In order to reduce HLLW to an actinide concentration level which is compatible with surface storage, very high DF’s are to be obtained. However a more reasonable approach is to reduce the concentration of MA and LLFP in a waste repository with a factor between 10 and 100 depending on the critical nuclide and on the prevailing hydrogeologic conditions. The reduction of the nuclide inventory will decrease the potential risk in the 1000 to 10.000 years period and reduce the time interval during which the proportionally decreased source term will determine the radiological impact of the repository on the geosphere.

The second field influencing the P&T option is the partitioning feasibility. Though extensive studies have been published on the partitioning of MA and LLFP an important effort will have to be accomplished in order to make the P&T option technologically valid. In the context of improved reprocessing the Np extraction deserves the first attention in order to quantitatively reroute this nuclide in one waste- or product stream, where it can be used as a starting point for transmutation operations. The extraction of Am – Cm from HLLW is still in the laboratory development stage but it appears that the coupling of an improved PUREX process flow sheet with the TRUEX process is capable of achieving a significant decontamination. The main issue to be resolved is the Am Cm / Rare Earth separation for which no fully satisfactory method is available. Among the LLFP, I-129 and Tc-99 are the most important ones and methods exist to transform them into a target for eventual transmutation. Other LLFP have only a limited radiological impact or cannot be separated unless isotopic separation is performed.

The third aspect of P&T is conditioning and fuel fabrication of MA which is the critical steps before transmutation can be envisaged. Np 237 can be homogeneously mixed with MOX fuel and submitted to irradiation in LWR and/or FBR’s, but the subsequent recycle operations will have to take into account increased Pu 238 concentration. Am – Cm recycle undoubtedly is the most difficult step since the separation from Rare Earths has not yet been accomplished on pilot scale and that a completely new remote handling technology has to be developed for that purpose. Pyrometallurgical processing of spent fuel to transform the MA into a new metal-alloy-type fuel is a new venture which needs a very large R&D effort to become comparable in confidence level with aqueous recycle methods.

The last and most important aspect of P&T is transmutation, which covers two distinct concepts: transmutation to a short lived actinide and/or incineration to fission products. Transmutation in LWR’S and HFR’s involves the transformation of Np 237 into Pu 238 and a buildup of a heavier isotope fraction of Am-Cm. Homogeneous recycling of MA in FBR’s is from reactor physics point of view feasible and the output of 6 LWR’S can be transmuted in one FBR of the same power. Heterogeneous recycle in FBR’s has principle advantages from fuel fabrication point of view but critical thermo-hydraulic problems have been encountered in the fuel assembly design. LMR’s and particularly ABR’s are the most suitable answers to the transmutation issue since their “incineration” potential is by far the highest among the fast reactors. The transmutation yield is yet limited to about 10 % per year which implies long transmutation periods for a given MA inventory. Accelerator driven transmutation is the most challenging option which will require very long R&D efforts to upgrade the high energy physics machines to production tools which can be operated in conjunction with a large nuclear inventory of MA arranged as a subcritical reactor vessel surrounding the proton beam inlet. The extreme high neutron fluxes attainable in such facilities provide a new outcome for long lived fission product transmutation.

2. International collaboration for advanced reactor and fuel cycle development.

2.1. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

The 21st century will have the most competitive, globalized markets in human history, the most rapid pace of technological change ever, and the greatest expansion of energy use, particularly in developing countries. As IAEA Director General Mohamed ElBaradei said at the 50th IAEA General Conference, in September 2006, technological and institutional innovation is a key factor in ensuring the benefit from the use of nuclear energy for sustainability.

The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001, on the basis of a resolution of the IAEA General Conference in 2000 [GC(44)/RES/21]. INPRO activities have since been continuously endorsed by resolutions of the IAEA General Conferences and by the General Assembly of the United Nations.

INPRO provides an open international forum for studying nuclear energy options, the associated requirements and the potential deployment of innovative nuclear energy systems in IAEA Member States. INPRO helps to make available knowledge that supports informed decision-making during the development and deployment of innovative nuclear energy systems and assists Member States in the coordination of related Collaborative Projects.

INPRO’s initial activity (Phase 1, 2001–2006) focused on the development of an assessment methodology to be used for screening an innovative nuclear system (INS), for comparing different INSs to find a preferred one consistent with the sustainable development of a given State and for identifying R&D needs.

The INPRO methodology, tested for consistency and completeness, has been published and documented in two IAEA Technical Documents, Methodology for the Assessment of Innovative Nuclear Reactors and Fuel Cycles (IAEA-TECDOC-1434) and Guidance for the Evaluation of Innovative Nuclear Reactors and Fuel Cycles (IAEA-TECDOC-1362). An additional User’s Manual, consisting of an overview volume plus a separate volume for each INPRO area of assessment, is in preparation to provide additional guidance on applying the INPRO methodology.

2.2. Generation IV International Forum (GIF)

The Generation IV International Forum, or GIF, was chartered in July 2001 to lead the collaborative efforts of the world’s leading nuclear technology nations to develop next generation nuclear energy systems to meet the world’s future energy needs.

Taking into account the expected increase in energy demand worldwide and the growing awareness about global warming, climate change issues and sustainable development, nuclear energy will be needed to meet future global energy demand.

Eight technology goals have been defined for Generation IV systems in four broad areas: sustainability, economics, safety and reliability, and proliferation resistance and physical protection. These ambitious goals are shared by a large number of countries as they aim at responding to economic, environmental and social requirements of the 21st century. They establish a framework and identify concrete targets for focusing GIF R&D efforts.

2.3. Coordination between INPRO and GIF

INPRO and the IAEA work together with the Generation IV International Forum (GIF) to create synergy and to avoid overlap:

§ By sending experts to the GIF Policy Group and to GIF working groups (Risk and Safety, Proliferation Resistance and Physical Protection, Evaluation Modelling);

§ By reviewing each other’s documents, such as the evaluation methodologies, as appropriate;

§ By organizing regular coordination meetings.

The differences between INPRO and GIF include the following:

1. Mission and activities: GIF is primarily focused on R&D of nuclear technology to meet global needs. INPRO has a broad variety of missions and activities, including providing a forum for experts on necessary innovation in nuclear energy, developing a methodology to assess innovative nuclear systems, providing common user considerations for the deployment of nuclear power in developing countries, and facilitating international cooperation on technological issues.

2. Membership: GIF membership is limited to those countries that can bring substantial resources and expertise to its R&D programmes, whereas INPRO members include both developed and developing countries. INPRO is open to all IAEA Member States. Currently, all members of GIF are also members of INPRO.

The complementary nature of INPRO and GIF and the potential for creating synergies on nuclear technology development have been recognized by both organizations. GIF focuses on R&D and a methodology for system development, and INPRO covers (1) the assessment methodology, (2) infrastructure and institutional aspects, and (3) assistance to Member States for Collaborative Projects. INPRO combines both technology holders and users, and takes into account the particular needs of developing countries.

3. Pros & cons on global suggestion for peaceful uses of nuclear energy, such as MNA and GNEP.

3.1. The MNA Initiative of the IAEA

It is important to note that the sensitive parts of the fuel cycle include not only enrichment of fissile uranium and reprocessing, but also long term storage and disposal of spent nuclear fuel and high level radioactive wastes (SNF/HLW). This point is made clear in the 2005 report published by the Multilateral Approaches (MNA) Expert Group that the Director General of the IAEA set up in mid-2004. The MNA report addresses the security and non-proliferation issues in a manner directly applicable to all aspects of the nuclear fuel cycle, and suggests five specific approaches for multinational initiatives. The proposals made have specific implications for storage and disposal strategies.

The MNA Group identified as factors influencing the assessment of multilateral approaches “assurance of nonproliferation” and “assurance of supply and services”. The former objective is clearly easier to achieve if multinational storage and disposal facilities can be made available. Leaving spent fuel in dozens of locations for many decades is obviously less proliferation resistant than collecting the material into a smaller number of facilities in stable host countries with very strong safeguards controls. There have, in fact, been various proposals from potential hosts and user countries for shared storage facilities that can be well secured. However, in practice, it will be difficult to transfer SNF/HLW to another country for storage without some clarity on the end-point of the agreement. Returning cooled spent fuel to many countries after several decades or returning HLW from reprocessed spent fuel would simply reinstate the current proliferation and security risks of dispersed storage. Moreover, accepting returned SNF or HLW would compel small countries to seek national deep disposal solutions – in which case they may as well have retained the fuel for disposal. In short, the assurance of non-proliferation sought by the MNA Group could be most expeditiously attained by early implementation of shared storage facilities – but only with the essential ingredient of an agreed further step of disposal in multinational repositories. These could be either in the countries storing the waste or in a limited number of other, volunteering, host nations.

The MNA Group recognizes in its report that there is currently no international market for storage or disposal and recommends that the IAEA supports the concept “by assuming political leadership to encourage such undertakings”. Specific ways forward are possible based on two multinational repository scenarios that have already been defined by the IAEA – “partnering” (between small nations) and “add-on” (acceptance of foreign fuel by a large nuclear nation), as documented in TECDOC 1314. It is emphasized correctly by the MNA Group that disposal and storage of SNF/HLW should not be looked at in isolation, but as part of a broader nuclear strategy. Some of the Group’s five suggested approaches for encouraging multinational initiatives have specific implications for multinational disposal.

One proposal is “reinforcing existing commercial market mechanisms”, e.g. by commercial fuel banks, fuel leasing and fuel take-back and commercial offers to store and dispose of spent fuel. Commercial market mechanisms in the past have made possible the transfer of SNF with no return of wastes, e.g. to reprocessing plants in France, the UK and Russia. Increasing public and political pressures on the organizations involved led to these services being withdrawn. The potential acceptability of reintroducing disposal arrangements could be greatly enhanced by IAEA support and by an IAEA commitment to oversee rigorously, or even to co-manage, the facilities.

The most promising multilateral approach for geological disposal may be “creating, through voluntary agreements and contracts, multinational, and in particular regional, MNAs for new facilities based on joint ownership, drawing rights or co-management”. This can be done for front-end and back-end nuclear facilities, such as uranium enrichment; fuel reprocessing; disposal and storage of spent fuel. Recent Russian enrichment proposals go in this direction. For disposal, interest in the partnering scenario that could lead to regional facilities is clearly evidenced by recent developments, in particular in Europe. The Arius Association, founded in 2002, currently pursues this concept as its main activity. The European Commission has promoted the concept of regional repositories in Europe in its Council Directive on “the management of spent nuclear fuel and radioactive waste” and is also funding the SAPIERR project, which is studying the potential for regional repositories in Europe.

Another suggestion is “promoting voluntary conversion of existing facilities” to MNAs. In the case of geological repositories, there are no facilities currently in existence, although several countries have advanced projects leading to implementation – in particular Finland, the USA, Sweden and France. Each of these, however, has made it very clear that the repositories are purely national and will not accept foreign fuel or wastes. The general consensus in the waste disposal community is that success in these programmes will help the cause of geological disposal world-wide. If this success is currently more assured by purely national approaches, it should not be interpreted as evidence that only national programmes can succeed. Of course, new multinational facilities might also be constructed in the “add-on” scenario, involving a large nuclear programme.

3.2. The US GNEP Proposal

In early 2006, President Bush announced the Global Nuclear Energy Partnership (GNEP), under which America intends to work with nations that have advanced civilian nuclear energy programmes, such as France, Japan, and Russia. The prime domestic aim is to develop and deploy innovative, advanced reactors and new methods to recycle spent nuclear fuel. GNEP is, however, also meant to provide a reliable fuel services programme, under which a consortium of nations with advanced nuclear technologies would provide fuel and reactors to other countries that agree to refrain from fuel cycle activities. The hope is to develop an international regime that will allow for fuel leasing, so that fuel can be leased to a country interested in building a reactor and taking fuel, but then the fuel can be taken back to the fuel cycle country. This fuel leasing approach would provide an incentive for nations to forgo enrichment and reprocessing technology. The recipient countries should benefit from “the certainty that fresh fuel would be available when needed and that used fuel would be taken back under agreed and reasonable terms”.

The brief document published by USDOE in January 2007 provides a timely and useful overview of the GNEP vision and of how DOE intends to implement this. The three goals:

• Wider-scale use of nuclear energy;

• decreasing risks of proliferation and nuclear terrorism;

• addressing the challenges of disposal;

are all of great importance for global environmental, safety and security reasons.

The plan concentrates strongly on technological issues associated with enhancing the US capabilities for undertaking key fuel cycle activities. This is obviously important because of the US expertise that has been lost over the past decades. It also highlights the view that GNEP can postpone for a long time the need for a second repository in the USA, provided that the facilities for advanced fuel cycle operations are brought on line. The strategy is however, needs to be strengthened in one key point – how to win the support of other nations and thus achieve success in the area of enhancing global security. This crucial issue is addressed below.

The DOE document claims that “the GNEP vision has been well received by the international community” – but continues with the phrase “particularly among the leading fuel cycle states”. However, support by such States is relatively easy to achieve; GNEP can only help to restrict the market in a way that helps providers of fuel cycle services. The consensus between the providers was illustrated following a meeting in May 2007 of officials from China, France, Japan, Russia and the USA, with observers from the UK and the IAEA [8]. They issued a statement addressing the prospects for international cooperation in peaceful uses of nuclear energy, especially in the framework of GNEP. Secretary Bodman of the USDOE was quoted as saying, “Today’s Joint Statement officially puts the ‘P’ in the Global Nuclear Energy ‘Partnership”. However, GNEP can work on the hoped for global scale only if the “P” for partnership includes also the smaller or the new nuclear programmes (Tier 2 countries) around the globe – countries that are to be prevented from having fuel cycle facilities (enrichment and reprocessing) that are their right under the current NPT that they have signed up to.

Currently, the only real incentive being offered to these Tier 2 countries is “reliable access at reasonable cost to fuel for civil nuclear power reactors”. However, they need to have guarantees that costs will be indeed reasonable and – perhaps more important – guarantees of security of supply of fuel cycle services. For some small countries, the existing US consent over transfer and use of US origin nuclear materials has had negative impacts in the past (e.g. delays in shipping fuel for countries like Switzerland; ban of reprocessing for South Korea, etc.). Why should small countries now welcome a new regime that even more firmly creates a two tier status in the nuclear world? Unless the USDOE also engages the small countries in discussion and unless it can offer greater incentives than at present, there is little or no incentive for them to buy-in to the GNEP initiative.

For enrichment, fuel fabrication, reactor construction and reprocessing there is already a sufficiently competitive market. No activities in these areas have been blocked or slowed due to a lack of willing vendors. With GNEP, this competitive market may well shrink. What extra incentives does GNEP offer? The most tangible additional service offer is the take-back of spent fuel. This could, in principle, be extremely attractive, since deep geological repositories for limited amounts of wastes are very expensive and are also difficult to site, for both technical and societal reasons. Removing the disposal problem from small nuclear programmes could outweigh the possible disadvantages that GNEP might bring them.

But will GNEP actually remove the problem? Currently the stated principles include “taking back spent fuel for recycling”. The text is silent about whether the HLW resulting from recycling will be retained by the recycling service provider. These wastes were previously retained in the case of the UK, France and Russia – but all of these subsequently altered this policy due to public and political pressure. Will the USA (and other Tier 1 GNEP countries) be able to accept foreign HLW) for final disposal? This question will certainly cause intense debate further down the GNEP line.

Already in its comments on the GNEP proposal, the State of Nevada has posed the following pertinent questions:

“Does DOE intend to take spent fuel from foreign reactors? If so, how much? Where will it be stored? Will this be only U.S.-origin spent fuel or fuel of other origins as well? Does DOE contemplate sending the foreign waste to a U.S. repository? The Draft PEIS must make clear DOE’s expectations on receiving foreign power reactor spent fuel and should factor that expectation into the GNEP option to be considered. The situation concerning radioactive wastes or spent fuel is, in fact, even more problematic. Small countries with existing modest inventories of spent fuel will have little incentive to send future spent fuel arising to a foreign recycler if they have to implement a national deep repository anyway. Moreover, even those countries that initiate civilian nuclear programmes under a GNEP agreement for returning spent fuel will have small quantities of other long-lived radioactive residues from activities in power production, research and industry – and these must also be disposed of in a geological repository. As was pointed out in the Russian case, a comprehensive geological disposal service will have much greater chances of acceptance by users.

Currently, the back-end issues associated with GNEP are open and no global impact can be guaranteed. The USA can still build its proposed new fuel cycle facilities, including advanced reactors and reprocessing plants, and can hope in this way to revitalize nuclear programmes in the USA and even to postpone the necessary decisions about a second national repository. However, to achieve fully the laudable global environmental and security goals, the back-end must be addressed directly. The overdue discussions to be held must include not only the Tier 1 service suppliers but also the potential Tier 2 service users. A key component of the GNEP strategy will be greatly strengthened when USDOE gets directly involved in communicating with the relevant organizations in Tier 2 GNEP states.

4. Promotions for international co-operation and collaboration for peaceful uses of nuclear energy.

Each country must be free to choose for itself the energy sources suited to its national interests, needs and conditions. None should be deprived of access to the technology for peaceful and safe utilization of nuclear power. However, in an increasingly interdependent world, as long as nuclear energy was in use, close international co-operation would be necessary to ensure, on the one hand, that nuclear technology is not abused or misused, and, on the other, that its benefits are made available in a safe and secure manner.

International co-operation in the peaceful uses of nuclear energy could reach its full potential, only in a world from which its potentially destructive uses had been eliminated. Therefore, our great challenge is to establish universal principles for the promotion of nuclear energy to contribute to sustainable growth of the global economy, solution of global warming problems, and meeting energy security needs, in well balance with furthering efforts to pursue the reduction of risks posed by threats of nuclear proliferation, nuclear terrorism, and existing nuclear weapons. The peaceful use of nuclear energy should not be exploited to acquire nuclear weapons capabilities. It is extremely important for the international community to make a long-term, sustained commitment to a ‘balanced’ approach to the peaceful use of nuclear energy in a world that is safer from nuclear risks. Therefore, we recommend the international community to urgently address the following issues.

Recommendation 1: Establish the “Three S” as universal guiding principles for safe and secure development of nuclear energy activities

Due to dual nature and necessity of risk management of nuclear energy, states that intend to introduce peaceful nuclear activities must take into account; a) Safety of their facilities and operation; b) Security of facilities and materials; and c) non-proliferation (or Safeguards). (“Three S”: Safety, Security, and Safeguards) For safe and peaceful promotion, mechanisms for international cooperation should be established in the areas of technical assistance such as human resource development as well as sharing best practice in safety, security and non-proliferation activities.

Recommendation 2: Provide appropriate international financial assistance schemes to nuclear energy programs and projects in developing countries

Capital procurement would be a key to expand nuclear energy worldwide. Nuclear power generation needs a large initial capital investment and requires a long-term payback period. Therefore, the international community should offer innovative financial mechanisms, with which private and public investment for the construction of nuclear reactors would be facilitated.

Recommendation 3: Address nuclear energy as an effective tool for coping with global warming and make appropriate schemes to incorporate nuclear energy into such efforts.

Currently, there is no incentive or mechanism to facilitate the utilization of nuclear energy for environmental purposes while nuclear energy is quite effective in terms of reducing CO2 emission. Such discrimination against nuclear energy might undermine international efforts to cope with global warming. We urge the international community to acknowledge that nuclear energy would be an effective way to contribute to containing the increase of CO2 emissions. Relevant mechanisms should be available for nuclear energy projects. In particular, we back the creation of a policy mechanism to systematically incorporate the promotion of nuclear energy in the efforts to tackle global warming in the new round of negotiations.

Recommendation 4: Address safety and liability properly both in the domestic regulatory framework and in international cooperation

The international community should provide cooperation with states which would like to introduce nuclear energy, in establishing a regulatory framework and administrative capacities in properly addressing safety and liability.

Recommendation 5: Universalize the Additional Protocol and enhance the export control regime

(1) Pursue universalization of the Additional Protocol

I believe that universalization of the Additional Protocol (AP) to IAEA safeguards agreements is one of the most important and effective ways to check nuclear proliferation. I recognize that it would be difficult to make the AP obligatory now. However, in the spirit of cooperation, and given the shared interests in reducing nuclear threats, the international community must create a more effective way to utilize the AP in multilateral and bilateral ways, for the objective of non-proliferation.

(2) Make adherence to Additional Protocol a condition for nuclear trade

Strengthening export control measures is essential for preventing proliferation.

Recommendation 6: Explore ways to utilize Assurance of Fuel Supply and Multilateral Approaches to nuclear fuel cycle for promoting non-proliferation and sharing nuclear energy opportunities.

(1) Reliable assurance of supply as key to effective multilateral mechanisms

Assurance of fuel supply for non-nuclear fuel cycle states (or multilateral approaches to nuclear fuel cycle) has significance in shaping and embedding robust non-proliferation norms and habits in the international community. The introduction of such mechanisms would contribute to non-proliferation.

(2) Multilateral mechanisms should not create new nuclear ‘haves’ and ‘have-nots’

International interdependence is already a fact in the area of nuclear fuel supply, and it will be increasingly important as most ‘national’ fuel cycle programs have international elements. Therefore, for some countries — such as those with small scale nuclear programs — it would be more efficient to rely on an international mechanism as a backup to fuel procurement through market mechanisms. Multilateral approaches may provide an alternative measure for states to procure nuclear fuels.

There is also concern that such mechanisms could fix the status of supplier states (or ‘nuclear haves’) and consumer states (or ‘nuclear have-nots’) – in other words, they could create another form of discrimination in the international nuclear order. Therefore, it is necessary for such a mechanism to be flexible enough to accept various types of contribution by member states, depending on what they can provide to the mechanism. Such mechanisms must be inclusionary rather than exclusionary.

Recommendation 7: Address concerns over the backend of fuel cycle

We should also look at the entire nuclear fuel cycle, from mining to spent fuel management. Most countries with civilian nuclear reactors face problems related to management of spent fuel. To make international assurance of supply credible and attractive, we need to address the management of the backend of the fuel cycle. Providing viable spent fuel management options would further increase the reliability of international mechanisms for managing the nuclear fuel cycle.

Recommendation 8: Strengthen enforcement and implementation mechanisms for non-proliferation

(1) Strengthen supplementary measures

Policy measures such as UNSCR1540 and the Proliferation Security Initiative (PSI) are important elements of the international non-proliferation regime.

(2) Make conditionalities for withdrawal from NPT

The exploitation of the provision for withdrawal in the NPT (Article X) is a great concern. Conditionality for withdrawal from NPT may be properly addressed at the NPT Review Conference.

(3) Strengthen the linkage between IAEA and UN Security Council for enforcement

The linkage of the IAEA and the UN Security Council, which is prescribed in the IAEA Statute, should be reinforced in a way that strengthens the capacity for enforcing non-proliferation rules.

(4) Proper combination among dialogue through ad hoc forum, incentives, and enforcement is important

In the meantime, addressing region-specific or issue-specific security concerns in multilateral for other than the UN or IAEA can provide effective ways to reduce nuclear threats, and supplement efforts through the UN or IAEA. The proper combination and balance among dialogue, incentives, and credible enforcement with possibility of sanctions should be utilized for resolving existing proliferation problems.

Recommendation 9: Deepen and widen international collaboration in developing proliferation-resistant technology and sophisticated safeguards and verification technology

A proper combination of political, institutional and technological measures would strengthen capabilities to cope with nuclear proliferation problems. In this sense, the development of proliferation-resistant technology is one promising approach to strengthening non-proliferation efforts. The international community should be further engaged in developing more proliferation-resistant fuel cycle and nuclear reactor technologies and more effective safeguards technologies, through international collaborations such as INPRO, GIF and GNEP. The technological approach to nuclear non-proliferation is important as it might create new ways to pursue nuclear energy while promoting non-proliferation. The technological approach and international cooperation to spur innovative research and development for safer and secure nuclear technologies could be effective approaches as they could supplement other non-proliferation measures.

Conclusion

The Partitioning and Transmutation (P&T) is an option for alternative Waste Management Strategy. The International collaboration for advanced reactor and fuel cycle development such as INPRO and GIF and the global suggestion for peaceful uses of nuclear energy, such as MNA and GNEP were importance for promoting the Co-operation and Collaboration for Peaceful Uses of Nuclear Energy.

Reference

1. www.iaea.org

2. www.google.com

Advertisements
Posted in Nuclear Licensing | Tagged , , , , | Leave a comment

New License System for Nuclear Reactor In Indonesia

New Licensing System for Nuclear Reactor in Indonesia

 

1.     Introduction

In the Presidential Regulation No. 5 Year 2006 on National Energy Policy 2025 states that national electricity plan up to 2025 includes 2% nuclear energy options. Furthermore, the Blue Print on national Energy management issued by Ministry of Energy and Mineral Resources, has established a program on the construction and operation of NPP. To meet the national electricity demands, one out of four NPPs be operated in the year 2016.

To face the construction and operation those NPPs, BAPETEN as the regulatory body performs preparations of NPPs controlling infrastructure, through establishment of regulations, licensing, review and assessment, and inspection and enforcement. Hence, it is implementing the Act No. 10 year 1997 on Nuclear Energy.

To implement article 3 paragraph 3 of Act No.10 year 1997 on Nuclear Energy, the Government Regulations No. 43 Year 2006 on the Licensing of Nuclear Reactor has been issued in December 2006. This government regulates the licensing of nuclear reactors including NPPs. The government regulations objective is to regulate the licensing of the constructions, operation and decommissioning of nuclear reactor, in order to ensure the safety and health of workers, members of the public, as well as the protection of the environment and the security of nuclear Installations and materials.

 2.     Licensing

Nuclear reactor to be licensed are: (a) Commercial and non commercial power reactors, and (b) Commercial and non commercial non power reactors. Commercial power reactor shall only be constructed based on proven technology.

The construction, operation and decommissioning of non-commercial power reactor or non-commercial non-power reactor are carried out by the promoting body which can cooperate with other government agencies and states universities. And the construction, operation and decommissioning of commercial power or non power, such as a nuclear power plant, is established by Ministry of energy after consulting with House of Parliament.

The operating organizations that will perform the constructing, operation and decommissioning nuclear reactor as stipulated in the article 5 shall have a license from Chairman of BAPETEN. This license is issued in several stages, including: (a) site licensing, (b) construction license, (c) commissioning license, (d) operating license, and (d) decommissioning license. The operating organization has fulfilled the administrative and technical requirement.

 2.1. Site License

Before submitting the applications of site license, the applicant shall perform site evaluation. And this site evaluation can only be conducted after fulfilling the requirements on site evaluation. More detail of those requirements on site evaluation will be further regulated in the chairman of BAPETEN regulation. In applying site license, the applicant shall submit an application to the chairman of BAPETEN. After receiving the site license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the license for the site.

 2.2. Construction License

The applicant shall submit an application for the construction license in a period of maximum 4 (four) year after the issuance of site license. This application is submitted to the Chairman of BAPETEN by attaching the administrative and technical requirement. After receiving the construction license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the license for construction. The construction license is valid for period of maximum 5 (five) year since the issued date.

 2.3. Commissioning License

An application for commissioning license could be submitted to the Chairman of BAPETEN when: (a) the construction activities have completed; (b) the applicant has already had possessed the license to utilize nuclear material; and (c) the reactor operator possessed the license. This application is submitted to the chairman by attaching the administrative and technical requirement. After receiving the Commissioning license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the license for Commissioning. The Commissioning license is valid for period of maximum 2 (two) year since the issued date.

2.4. Operation License

The applicant may submit an application for an application for an operation license to the chairman of BAPETEN when: (a) the Commissioning activities have completed; (b) the applicant has already had possessed the license to utilize nuclear material; and (c) the reactor operator possessed the license. This application is submitted to the chairman by attaching the administrative and technical requirement. After receiving the operation license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the license for Operation. The Operation license is valid for period of maximum 40 (forty) year since the issued date.

2.5. Combined Operation License

For nuclear reactor with modular design certificate by vendor regulatory body, the applicant may submit an application for combined license after possessing site license. The combined license is a combination of construction, commissioning and operation license. And the applicant shall submit an application of combine license within maximum period of 2 (two) year since the issuance of the site license. When the applicant does not apply for combined license within the period of 2 year, the site license is declared not valid.

This application is submitted to the chairman by attaching the administrative and technical requirement. After receiving the operation license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the Combine Operation license. The Combine Operation license is valid for period of maximum 45 (forty five) year since the issued date.

2.6. Decommissioning License

Decommissioning activities shall performed when: (a) Nuclear employer apply, before operation license or combined operation license expired; (b) Nuclear employers will not renew the operation license or combined operation license; (c) Application for operation and combine operation license renewal is refused by the chairman of BAPETEN based on the safety and/or security problems; or (d) There is severe accident or an event threatening the safety and/or security of nuclear reactor operation. This application is submitted to the chairman by attaching the administrative and technical requirement. After receiving the operation license application document further BAPETEN will conduct review and assessment. If the application fulfill the requirement and technical acceptance criteria BAPETEN will stipulated the license for Decommissioning. The Decommissioning license is valid from the issued date until the declaration of the free radiation and contamination release of site is issued by the Chairman of BAPETEN.

2.7. Termination of  License

The termination of license, which is not applied for the site and decommissioning license, is subject to: (a) the expiration of the license; (b) the nuclear employer go bankrupt; (c) license revoking by BAPETEN; or (d) an application by the nuclear employers.

In the case the license termination as mentioned above, the nuclear employers still have the responsibility for the performing of decommissioning and management of nuclear reactor, nuclear fuel, and radioactive waste complying with applied regulations.

3.     Modification

The nuclear reactor license could perform the modification of system, structure and components of a nuclear reactor after meeting the modification requirement.

 4.     Inspection

Inspection for the regulatory control to ensure the site, construction, operation and decommissioning of nuclear reactor licensing requirement are complied with, are performed by BAPETEN. Those inspections are performed (periodically or incident, with or without any notification) by inspectors who are appointed and dismissed by the chairman of BAPETEN.

 5.     Conclusion

Indonesia is already prepares the new licensing system for nuclear reactor by issued Government Regulation No. 43 Year 2006.

Facing the first nuclear power plant construction, BAPETEN as soon as possible accelerates the establishment of regulations and guide to support the government regulations No. 43 Year 2006.

REFERENCE

[1] Act No. 10/1997 on Nuclear Energy, BAPETEN, Indonesia, 1997.

[2] Government Regulation No. 43/2006 on Licensing of Nuclear Reactor, BAPETEN, Indonesia, 2006.

 

Posted in Nuclear Licensing | Tagged , , , | 2 Comments

Conceptual Design of On-line Based Licensing Review and Assesment System

Conceptual Design of On-line Based Licensing Review and Assesment System

 of Nuclear Installations and Nuclear Materials (“PRIBEN”) 

1.     Introduction

At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. There are only three research reactors, one nuclear fuel fabrication plant for research reactors, and one experimental fuel fabrication plant for nuclear power, one isotope production facility and some other research facilities.

All the facility is under Nuclear Energy Regulatory Agency (BAPETEN) controlling through regulation, licensing and inspection. The organizations operation submits licensing application to BAPETEN before utilizing the facility. According to the regulation before BAPETEN give license they perform review and assessment for the utility application. Based on the review and assessment result, BAPETEN may stipulate, reject, delay or terminate the license.

In anticipation of expansion of the nuclear program in Indonesia, BAPETEN should have an integrated and updated system for review and asses the licensing application. For this reason, an expert system for the review and asses the licensing application, so-called PRIBEN (Perizinan Reaktor, Instalasi dan Bahan Nuklir/Licensing of Reactor, Nuclear Installations and Nuclear Materials), is developed which runs on the online-based reality environment. The “PRIBEN” are information management system application (relational database management system- RDBMS) for integrated and online licensing activity of reactors, nuclear installations, and nuclear materials for the entire stake holder which is related with the licensing process.  This application is developed and designed based on graphic interface with modular system. This application is flexible and easier for more advances developing in near future.

 2.     Scope and Objective of  PRIBEN

“PRIBEN” monitoring are for research reactor, non reactor nuclear installations, personnel certification, package certification validation and power reactor, especially for site licensing.  

“PRIBEN” basic data systems have several objectives:

  • a. To create a homogenate and integrated licensing process;
  • b. To make easier licensing process which is conducted by several personnel together in on time and integrated;
  • c. To make easier tracking system for all the licensing process which is have been perform, on going, and will be conducted so the position/condition of an activity could know in every moment fast and correct.
  • d. To assure all the activity and administration of licensing process is documented and record systematically.

3.     The Structure and Construction of “PRIBEN”

3.1. Basic Concept of ” PRIBEN”

“PRIBEN” is design with comprehensive and integrated because it’s connected online to all available transaction in every activity of BAPETEN. Here are the activities:

a. Licensing Registration (New, Renewal, Modification, Incident/Accident)

b. Planning and Evaluation :

  • Preliminary evaluation
  • Internal and coordination meeting
  • Final evaluation and Stipulated of decision

c. Recording and documentation of evaluation process.

“PRIBEN” composed of 3 (three) modules as shown in fig. 1. The modules are:

  • a. Master Data
  • b. Operational
  • c.Publishing/Stipulate/Report

Fig 1. The structure of PRIBEN Modules

3.2. Application and Display of “PRIBEN”

PRIBEN is relational database. It is design using PHP and MySQL database script application. Fig. 2 shows the screen of PRIBEN for research reactor. In the left there are several available menus for application:

a. Main Facility

b. Support Facility, and

c. Independent Study (as a refreshment for beginner evaluator)

For example, if we choose research reactor then we can click the research reactor box in menu in the left of the screen (see fig.2.) Indonesia only have 3 (three) research reactor so there are only 3 option to choose. Then if we want to choose PRSG-MPR Reactor in Serpong then click “MPR 30MWth, Serpong” so we will see other screen, etc. 

After we enter the MPR 30MWth, Serpong in the right of the screen we will see beside general specification, we can see also 4 (four) button:

  • 1. Button OPERATION STATUS, to show a licensing process including the Report for Result of Review and Assessment (LHE), if available.
  • 2. Button NUCLEAR MATERIALS, to show a status process of nuclear materials in facilities which are related with the LHE, if available.
  • 3. Button REPORT, to show status of report from facilities which is related with the daily report or incident/accident report (incident reporting system).
  • 4. Button PERSONNEL, to show personnel status who is work as radiation worker including Supervisor/Operator Reactor, Maintenance Personnel, Nuclear Material Supervision Personnel, Radiation Protection Personnel, etc which is predicted needed for the database.

“PRIBEN” application are focusing to a review and assessment (evaluation) process in order to ensure that every problems which is excise in each facility can handle by BAPETEN, including  process for certification of nuclear materials package/transportation, ageing management and regulation collection which is needed in licensing review and assessment process.

4.     Conclusion

“PRIBEN” could be able to support an integrated and dynamic nuclear installations and nuclear materials licensing system.

 REFERENCE

 [1] Act No. 10/1997, BAPETEN, 1997.

[2] NUREG 0800, Standard Review Plan for the review of SAR for NPPs, USNRC, 2007.

[3] Licensing document of MPR, Triga Mark II Reactor, and Triga Mark Reactor, BAPETEN, 2007.

 

Fig 2. The Screen of PRIBEN for Research Reactor

Posted in Nuclear Licensing | Tagged , , , , , | 2 Comments

Regulatory Control of Ageing Research Reactor in Indonesia

Regulatory Control of Ageing Research Reactor In Indonesia

Abstract

According to the requirements of BAPETEN, safety review (SR) to the report on ageing assessment should be carried out for the license renewal applications of research reactors that have been operated more than 25 years. Ageing management is one of the important safety factors to be reviewed for license renewal applications. In order to assess continued operation of a research reactor from the reactor safety standpoint, a methodical approach should be taken. Such an approach will utilize data from the ageing management program and should incorporate the following considerations: A safety review of the reactor tailored to establish the actual status of the systems regarding degradation from ageing or other specific mechanisms; An overview of the potential refurbishment needs, by establishing a comprehensive list of systems and components, categorizing and prioritizing them; A selection of the critical items and identification of the relevant ageing mechanisms in order to perform a preliminary evaluation of the critical items; The establishment of the technical feasibility of the refurbishment program; and The identification of further studies and inspections to refine the preliminary assessment. This paper described the regulatory control of ageing research reactor in Indonesia, including the rules and regulation, the licensing process and the periodic review of ageing management.

 

Keywords: ageing management, research reactor, and review.

1. Introduction

The Nuclear Energy Regulatory Agency (BAPETEN) was established as an autonomous body reporting to the President of Indonesia by Act No. 10 Chapter II, article 3 regarding institution, known as the Nuclear National Act, which came into force on year 1997, and is empowered to regulate and control the nuclear activity. BAPETEN is conducting the safety regulation and inspections related to nuclear and radiation safety, in nuclear facilities, including research reactors. Its implies implementing three major activities: establishing the laws and safety standards of nuclear and radiation safety in the fields of research reactors; licensing of the research reactors; and inspections (or the license conditions tracking, inspection and application of sanctions). The rules and regulations of nuclear energy are described in regulations hierarchy.

In the field of radiological and nuclear safety control applied to research reactors, BAPETEN regulatory activities are directed at controlling three research reactors ; Triga 2 MW (th) Research Reactor in Bandung, Kartini 100 KW (th) Research Reactor in Yogyakarta and RSG – GAS 30 MW (th) Research Reactor in Serpong. All those research reactors are managed by BATAN and they are over 25 years old.

In Indonesia, research reactors that have been operating for more than 25 years undergo a systematic safety reassessment at the request of the safety authority. For such a reassessment, the applicant has to provide updated safety documents for the installations for example;

  • 1. The SSCs feasibility to operate
  • 2. Ageing management Program
  • 3. A yearly maintenance report
  • 4. Feasibility report for operation every 5 years
  • 5. Preparation of decommissioning program

 2. The rules and regulations

                   Regulatory policy, for continued operation of an Research Reactors, requires utility to demonstrate that the system, structure and components will function without impairment of safety margin in all operational states during the service life of an Research Reactors. The requirements related to ageing management are specified in the various regulatory documents issued by BAPETEN as shown in figure 1.

Figure 1. National Legislation Hierarchy

BAPETEN evaluates documents related to ageing, which specially provide criteria that can be implemented to research reactors in Indonesia. Acceptance criteria for establish the safety requirements related to ageing is a main issue in ageing management for research reactors in Indonesia. It is very difficult to regulate the acceptance criteria without representative data due to the unique characteristic for individual reactor and Lack of document control when the reactor was constructed makes it be more difficult.

 3. The licensing Process of Ageing Management

 The licensing process for the Research Reactors in Indonesia is governed by the Government Regulation No. 43 Year 2006 on “Licensing For Nuclear Reactors”. As per the requirements of this Government Regulation, the operating organization is required to establish certain programs with respect to plant life management, before authorization is issued to a Research Reactors license application.

 As per the regulatory policy of BAPETEN, Authorization for operation of Research Reactors is issued for a specified period. Renewal of Authorization for operation beyond this shall be subject to a comprehensive Periodic Safety Review of the Research Reactors, as per the guidelines given in BAPETEN Safety Guide on Periodic Safety Review for Renewal of Authorization of Research Reactors. Presently Periodic Safety Review of Research Reactors is performed at a periodicity of once in ten years for Indian Research Reactors. The Periodic Safety Review aims to assess the plant vis-à-vis the current safety requirements, to identify and evaluate the shortcomings and take corrective actions as necessary. One of the important aspects of this review is to determine whether Research Reactors ageing is being effectively managed, so that the required safety margins are maintained and whether an adequate ageing management program is in place for future operation of the Research Reactors.

 4. Status of Research Reactor in Indonesia

BAPETEN regulatory activities are directed at controlling three research reactors ; Triga 2 MW (th) Research Reactor in Bandung, Kartini 100 KW (th) Research Reactor in Yogyakarta and RSG – GAS 30 MW (th) Research Reactor in Serpong. All those research reactors are managed by BATAN and they are over 25 years old. All reactors are in operation, here is the detail of long time operation periods:

  • (a) TRIGA 2000 : 34 years old
  • (b) Kartini : 26 years old
  • (c) RSG-GAS : 18 years old

Decommissioning would not be a best choice, but ageing problems are crucial and ageing would be the main issue for continued operation. Table 1 shown detail of research reactors in Indonesia.

Table 1. Research Reactor In Indonesia

Details  TRIGA 2000 Reactors Kartini Reactor

G.A. Siwabessy MPR (RSG-GAS)

Location Bandung, West Java Yogyakarta (Central Java) Serpong, Banten (West  Java)
Type TRIGA reactor TRIGA reactor Multi Purpose Reactor
Thermal Power 2000 kWFirst critical at 1964 (250 kW)Upgraded to 1000 kW on 1971Upgraded to 2000 kW on 2000 100 kWSome components/structures were provided from first upgrading of Bandung reactor (1971), First critical at 1979 30 MWFirst critical at 1987
License Valid up to 2016 Valid up to 2010 Valid up to 2020

 

5. Efforts to Approach the Ageing Management Related On the Regulation

5.1. The SSCs Feasibility to Operate

The SSCs Feasibility to Operate is to obtain information on behavior of the components, as identified for ageing management purpose, under reactor environment and to undertake necessary studies/experiments with respect to their residual life assessment. The utility has to demonstrate that the required resources and infrastructure for this activity is being provided.

 The categorization of components, structures and systems susceptible to ageing should be based on factors such as importance to safety, repair ability or replace ability. One example of such categorization of components is as follows:

  • a. Category I: Equipment of primary importance, not redundant, not easily repairable or replaceable (reactor tank, primary coolant system piping).
  • b. Category II: Equipment of primary importance, but redundant or can be easily inspected or repaired (e.g. electric power supply, control rods).
  • c. Category III: Equipment not primarily important but not easily inspect able or repairable (e.g. primary water purification system).
  • d. Category IV: Other equipment (e.g. auxiliary diesel generators).

The assessment to the feasibility of operation and the evaluation of Systems, Structure and components (SSCs) capability were accomplished by BAPETEN and by organization operation for the verification of the capability of old nuclear facility in order to guarantee the operation license that the research reactor is still feasible to be operated and to avoid any accident occurred due to incapability of SSCs.

Here is an example of Categorization of SSCs important to safety (Kartini Reactor):

  • a. Reactor core: fuel element, grid plate, control element, reflector.
  • b. Experimental facilities connected to reactor core: inner part of beam port, thermal column, thermalizing column.
  • c. Primary cooling system: primary coolant, demineralizer, primary pump, pipe and valve, reactor tank.
  • d. Instrumentation & control system: neutron detector, control element and mechanism, data acquisition and control system, cables, etc.

 5.2. Ageing Management Program

The probability of a component, system or structure failure resulting from ageing degradation normally increases with the time of exposure to service condition unlesscounterm easures are taken. The objective of the management of ageing is to determine and apply these countermeasures. The management of ageing includes activities such as protection, repair, refurbishment or replacement, which are similar to other activities carried out at a reactor facility during routine maintenance and testing or when a modification project takes place. However, it is important to distinguish between these different activities, because the management of ageing requires the use of methodology which will detect and evaluate deficiencies produced by the service conditions and will lead to the application of countermeasures for prevention and mitigation of the deficiencies. One approach to this methodology is a determination that the reactor systems and components can perform their safety functions during their service life and under the service conditions. This can be achieved through appropriately selecting systems and components which should be subjected to surveillance activities and included in a long term ageing detection program, through data collection and through evaluation of the potential ageing effects. The above activities will be accompanied by countermeasures for prevention and mitigation of the ageing effects to ensure an adequate level of safety for the reactor facility.

To manage ageing it is necessary to understand how ageing affects the components and materials which are used to achieve overall safety of the reactor.  

Surveillance Program- to verify and ensure that the provisions made in the design to ensure safety margins continue to exist and the safety of the plant does not depend upon untested or unmonitored components, systems or structures.

In-service Inspection (ISI) Program- to examine plant components and systems for possible deterioration in their integrity to assess the safety margins and their acceptability for continued operation of the plant and to take corrective measures as necessary.  Systems, Structures and Equipment (SSE) important to safety of the plant are identified in the In-service Inspection manual, which gives the requirements with respect to  (a) frequency of inspection  (b) method of inspection and  (c) the acceptance criteria.

Performance Review Program- to identify and rectify gradual degradation, chronic deficiencies, potential problem areas or causes.  This includes review of safety-related incidences & failures of SSE of the plant, determination of their root causes, trend, pattern and evaluation of their safety significance, lessons learnt and corrective measures taken.

Tecdoc-792 “Management Of Research Reactor Ageing” are used on Discussing the ageing problems activities have been performed (by operating organizations): (i) Categorization of SSCs important to safety related to ageing, (ii) In-service inspection for some components.

Here is the operating organization of research reactor activities related to ageing management:

  • a. TRIGA 2000 Reactor has experienced with ageing problems when upgraded to 2000 kW and the reactor tank was replaced with new one.
  • b. Kartini Reactor has performed ISI for reactor tank/liner.
  • c. RSG-GAS has performed ISI for reactor tank by visual inspection (under water camera), and the result will determine furthermore testing.

5.3. A Yearly Maintenance Report

The IAEA Code of the Safety of Nuclear Research Reactors: “Components important to safety may require special attention to prevent ageing effects from causing unexpected failures. In such cases a preventive maintenance philosophy is one of the approaches which should be adopted.”

Decree of the BAPETEN Chairman “Safety Provision on Research Reactors Operation” (Adopted From Safety Series No. 35-S2) “A preventive maintenance should be implemented to prevent ageing effects from causing unexpected failures of components important to safety”. IAEA Safety Requirements No. NS-R-4 is under preparation to be implemented in the regulatory system in Indonesia.

Preventive maintenance is utilized to detect and mitigate degradation and failure of components, structures and systems, and includes repair, replacement and refurbishment activities. Traditionally, the preventive maintenance program is scheduled according to manufacturers’ recommendations, warranty requirements and facility staff experience. This applies quite well for standard equipment and optimization of timing may be done as experience with this equipment grows.

For the research reactor components and systems exposed to environments which accelerate ageing effects, information from the literature and the experience from older facilities may be utilized to develop the preventive maintenance program based on predicted failure rates. The maintenance program should be periodically reviewed following analysis of accumulated data.

As stated on the License Condition periodically the research reactor operating organization have to report to BAPETEN a maintenance report. BAPETEN review the maintenance report. Maintenance report objective is to ensure that (i) Safety Status of the Plant is not adversely affected due to aging, deterioration, degradation or defects of plant structures, systems or components since commencement of operation and  (ii) their functional reliability is maintained in accordance with the design assumptions and intent over the operational life span of the plant.

5.4. Feasibility Report for Operation Every 5 Years

Operating conditions (or modes) have already been defined as part of service conditions which affect ageing processes. Periodic evaluation of operational experience may reveal the need to change operating conditions such as operation mode, core arrangements and chemical parameters of fluid. 

The frequency of inspections is also a parameter which requires optimization. Too high a frequency of inspection and maintenance work or tests may also accelerate ageing and an assessment of this effect is required.

As stated on the License Condition every 5 (five) the operating organization of research reactor have to make a feasibility report for operation.  BAPETEN review the feasibility report for operation. Feasibility report for operation. objective is to ensure that (i) Safety Status of the Plant is not adversely affected due to aging, deterioration, degradation or defects of plant structures, systems or components since commencement of operation and  (ii) their functional reliability of SSCs is still comply with the requirement.

 5.5. Preparation of Decommissioning Program

As stated on the License Condition a year before the license operation terminate date the operating organization of research reactor have to plan is there the reactor will continue to operate by request renewal license application or the reactor will be decommissioning.  If the research reactor wants to close down the operating organization have to prepare the decommissioning program. From the 3 (three) research reactor, Kartini Reactor will be the first one which plan to decommissioning due to after performed ISI for reactor tank/liner is concluded that the Kartini reactor tank can only uses until year 2011.

Presently the Kartini Reactor operating organizing already made decommissioning team who will be preparation of decommissioning plan. Presently BAPETEN made draft Decree of Chairman BAPETEN on Requirement for Decommissioning program. On the year 2008 we will plan to make standard review plan for decommissioning program to assess is the decommissioning licensee application is complies the regulation requirement.

6. Conclusions

The research reactor in Indonesia have been performed ageing management activities by: (i) Categorization of SSCs important to safety related to ageing, (ii) In-service inspection for some components. TRIGA 2000 Reactor has experienced with ageing problems when upgraded to 2000 kW and the reactor tank was replaced with new one. Kartini Reactor has performed ISI for reactor tank/liner.  RSG-GAS has performed ISI for reactor tank by visual inspection (under water camera), and the result will determine furthermore testing.

The research reactor in Indonesia have comply the requirement of Government Regulation Number 43 Year 2006 in implement ageing management.

 7. Reference

  • 1. Nuclear Energy Act Number 10 Year 1997.
  • 2. Government Regulation of The Republic of Indonesia Number 43 Year 2006 on The Licensing of Nuclear Reactor.
  • 3. Decree Of the Bapeten Chairman “Safety Provision On Research Reactors Operation” No. 10/99.
  • 4. Decree Of The Bapeten Chairman “Ageing Management Of Nuclear Installation” (Draft)
  • 5. The Licensing document of Research reactor In Indonesia, BAPETEN.
  • 6. Technical Document Number 792 ‘Management of research reactor Ageing, International Atomic Energy Agency. Vienna, 1995.
Posted in Nuclear Licensing | Tagged , , , , | Leave a comment

Kajian Permasalahan Perizinan “Tenorm” di Provinsi Bangka Belitung

KAJIAN PERMASALAHAN PERIZINAN ‘TENORM’ DI PROVINSI BANGKA BELITUNG

ABSTRAK

KAJIAN PERMASALAHAN PERIZINAN ‘TENORM’ DI PROVINSI BANGKA DAN BELITUNG. Perizinan pemanfaatan bahan nuklir khususnya TENORM terhadap perusahaan pengolahan timah di Provinsi Bangka-Belitung, permasalahan dan tantangannya bagi BAPETEN disajikan dalam makalah ini. Sosialisasi mengenai tata cara dan persyaratan perizinan pemanfaatan bahan nuklir telah diberikan sesuai dengan Peraturan Pemerintah No. 64 tahun 2000 tentang Perizinan Pemanfaatan Tenaga Nuklir telah banyak dilakukan, namun belum mencapai tingkat efektivitas yang diharapkan. Hal tersebut ditunjukkan cukup banyaknya perusahaan penghasil dan pemanfaat TENORM di Provinsi Bangka Belitung yang belum memiliki izin pemanfaatan bahan nuklir (TENORM). Pengawasan terhadap pemanfaatan tenaga nuklir dalam bentuk penerbitan izin diperlukan untuk menjamin keselamatan dan kesehatan pekerja dan anggota masyarakat serta perlindungan terhadap lingkungan hidup.

Tujuan kajian permasalahan perizinan ‘TENORM’ adalah untuk menyampaikan permasalahan yang dihadapi BAPETEN, khususnya Direktorat Perizinan Instalasi dan Bahan Nuklir, dalam  pelaksanaan pengawasan pemanfaatan bahan nuklir khususnya TENORM serta solusi agar kegiatan pengawasan tersebut dapat dilakukan secara efektif mengikuti ketentuan-ketentuan yang berlaku.

 

Kata kunci: Perizinan, TENORM, Bahan Nuklir.

 

ABSTRACT

ASSESMENT OF TENORM LICENSING PROBLEMS IN BANGKA BELITUNG PROVINCE. The licensing for utilization of nuclear materials, expecially TENORM  for companies in Bangka-Belitung Province, problems and challenge for BAPETEN have been presented in this paper. The Method and Requirement for licensing of the  utilization of nuclear materials have already been given  in accordance to the Goverment regulation No. 64 year 2000 on The utilization of nuclear energy, however the effectiveness still has not been satisfactory. The uneffectiveness of the licensing socialization shown by the fact that there are still a lot off companies at Bangka Belitung Province doesn’t have Nuclear material licencees from BAPETEN.  Control of the utilization of nuclear energy in the form of licensing is required to ensured nuclear safety for worker, people and environment from radioactive releases.

This paper described the problems which have been faced by BAPETEN, especially the Directorate for License of Nuclear Installations and materials, in controlling the utilization of nuclear material, especially TENORM, and  also the solution to ensure that the implementation can be conducted effectively following the establish requirement.

 

Keywords: Licensing, TENORM, Nuclear Material.


I. Pendahuluan

Badan Pengawas Tenaga Nuklir (BAPETEN) merupakan Lembaga  Pemerintah Non Departemen yang terpisah dari Badan Tenaga Nuklir Nasional (BATAN). Menurut  Pasal 28 Keputusan Presiden No. 103 tahun 2001 tentang Kedudukan, Tugas, Fungsi, kewenangan, Susunan Organisasi, Dan Tata Kerja Lembaga Pemerintah Non Departemen, BAPETEN mempunyai tugas melaksanakan tugas pemerintahan di bidang pengawasan tenaga nuklir sesuai dengan ketentuan peraturan perundang-undangan yang berlaku. Sedangkan menurut Pasal 31 BATAN mempunyai tugas melaksanakan tugas pemerintahan di bidang penelitian, pengembangan, dan pemanfaatan tenaga nuklir sesuai dengan ketentuan peraturan perundang-undangan yang berlaku. Dengan demikian BAPETEN mempunyai kewenangan dalam hal pengawasan pemanfaatan tenaga nuklir di Indonesia.

Menurut Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran pasal 17 ayat (1), setiap pemanfaatan tenaga nuklir wajib memiliki izin, kecuali dalam hal-hal tertentu yang diatur lebih lanjut dengan peraturan pemerintah. Pemanfaatan adalah kegiatan yang berkaitan dengan tenaga nuklir yang meliputi penelitian, pengembangan, penambangan, pembuatan, produksi, pengangkutan, penyimpanan, pengalihan, ekspor, impor, penggunaan, dekomisioning, dan pengelolaan limbah radioaktif untuk meningkatkan kesejahteraan rakyat. Tenaga nuklir adalah tenaga dalam bentuk apapun yang dibebaskan dalam proses transformasi inti, termasuk tenaga yang berasal dari sumber radiasi pengion.

TENORM (Technologically Enhanced Naturally Occuring Radioactive Material) adalah suatu material hasil proses dari material kategori bahan NORM (Naturally Occuring Radioactive Material) yang mengandung radioaktif lebih besar dibanding radioaktif pada NORM. TIN SLAG, Ilmenit dan Monazit adalah hasil samping dari proses pemurnian/smelting pasir timah (TENORM). TIN SLAG, Ilmenit dan Monazit mengandung zat radioaktif 228Th, 228Ra, 226Ra dan 40K dalam jumlah yang melampaui batas dari pengecualian izin seperti yang disebutkan dalam Keputusan Kepala No. 019/Ka-BAPETEN/IV-00 tentang Pengecualian dari kewajiban Memiliki Izin Pamanfaatan Tenaga Nuklir.

Tujuan kajian permasalahan perizinan ‘TENORM’ adalah untuk menyampaikan permasalahan yang dihadapi BAPETEN, khususnya Direktorat Perizinan Instalasi dan Bahan Nuklir, dalam  pelaksanaan pengawasan pemanfaatan bahan nuklir khususnya TENORM serta solusi agar kegiatan pengawasan tersebut dapat dilakukan secara efektif mengikuti ketentuan-ketentuan yang berlaku. Dalam makalah ini dilakukan kajian terhadap permasalahan perizinan ‘TENORM’ yang ada di provinsi Bangka Belitung untuk mengetahui sejauh mana perusahaan pengolah timah yang ada di provinsi Bangka Belitung  telah mengetahui peraturan ketenaganukliran serta ketentuan/persyaratan perizinannya.

II. Perizinan TENORM

II.1. Latar belakang

Di alam ada material-material yang secara alamiah telah mengandung zat radioaktif yang dikenal dengan NORM (Naturally Occuring Radioactive Material) radionuklida yang terkandung didalamnya adalah U-238, Th-232,  bersama dengan anak luruhnya Ra-226, Pb-210, Po-210, Ra-228 dan Th-228. Pasir yang ada dalam tambang timah mengandung bahan radioaktif (misal Th-232), termasuk dalam kategori NORM yang merupakan bahan radioaktif yang terbentuk secara alami.

Dalam Keputusan Kepala BAPETEN No. 019/Ka-BAPETEN/IV-00 tentang Pengecualian dari kewajiban Memiliki Izin Pemanfaatan Tenaga Nuklir, terdapat daftar unsur radionuklida bahan nuklir dan aktivitas/konsentrasi maksimum yang dikecualikan dari memiliki izin pemanfaatan Tenaga Nuklir dari BAPETEN.

Berdasarkan hasil analisis dari BAPETEN tahun 2002[6] (lihat Tabel 1) dan hasil analisis dari PT. Kobatin tahun 2005, TIN SLAG, Ilmenit dan Monazit mengandung zat radioaktif 228Th, 228Ra, 226Ra dan 40K dalam jumlah yang melampaui batas dari pengecualian izin KepKa No. 019/Ka-BAPETEN/IV-00[4] tentang Pengecualian dari kewajiban Memiliki Izin Pemanfaatan Tenaga Nuklir. Oleh karena itu maka Pemanfaatan Bahan Nuklir (TENORM) wajib memiliki izin. 

 

Tabel 1. Hasil Kajian Tim BAPETEN Tahun 2002

No

Jenis contoh

KandunganTh-228 (Bq/gr)

Batas pengecualian

SK 19/2000, (Bq/gr)

1 Pembuangan akhir monazite di Bemban

27,182

1

2 Pembuangan akhir monazite + tanah Bemban baru

17,069

3 Pembuangan akhir monazite lama

40,511

4 Slag dumping 7 (Slag II di sumur 7)

12,825

5 Buangan proses smelter

14,065

6 Padatan dari Bin Ilmenit

2,749

7 Tanah Koba Tin (Slag I)

5,843

Provinsi Bangka Belitung memiliki kekayaan sumber daya alam mineral yang cukup melimpah, hal tersebut ditandai dengan cukup banyaknya jumlah penambang timah baik milik negara, swasta dan rakyat. Dengan demikian cukup banyak penambang timah tersebut yang juga menyimpan hasil samping tambang timah tersebut bahkan dimanfaatkan dan dijual secara bebas. Mengingat hasil samping tambang timah (TENORM) memiliki kandungan zat radioaktif yang melebihi batas pengecualian maka perusahaan pemanfaat TENORM tersebut wajib memiliki izin pemanfaatan tenaga nuklir dari BAPETEN terlebih dahulu. Adapun persetujuan untuk mendapatkan izin tersebut menurut Peraturan Pemerintah No. 64 tahun 2000[3] tentang Perizinan Pemanfaatan Tenaga Nuklir, pasal 3 sebagaimana disampaikan pada butir II.2.

Dengan adanya kandungan zat radioaktif tersebut, maka TENORM tersebut dapat menimbulkan masalah radiologi, jika masuk kedalam tubuh manusia, baik melalui pernapasan, pencernaan, luka pada kulit dan mata. Oleh sebab itu, pekerja harus menggunakan peralatan protektif seperti masker untuk pelindung pernapasan, serta sarung tangan agar jika terjadi luka tidak langsung tersentuh dengan TENORM.

II.2. Persyaratan Izin Pemanfaatan Bahan Nuklir

Persyaratan penerbitan izin pemanfaatan bahan nuklir dalam hal ini TENORM didasarkan pada peraturan sebagai berikut :

  • – Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  • – Peraturan Pemerintah No. 64 tahun 2000 tentang Perizinan Pemanfaatan Tenaga Nuklir.
  • – Peraturan Pemerintah No. 26 tahun 2000 tentang Keselamatan Pengangkutan Zat Radioaktif.

Dalam Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran pasal 17 ayat (1) diterangkan bahwa, setiap pemanfaatan tenaga nuklir wajib memiliki izin, kecuali dalam hal-hal tertentu yang diatur lebih lanjut dengan peraturan pemerintah. Pemanfaatan adalah kegiatan yang berkaitan dengan tenaga nuklir yang meliputi penelitian, pengembangan, penambangan, pembuatan, produksi, pengangkutan, penyimpanan, pengalihan, ekspor, impor, penggunaan, dekomisioning, dan pengelolaan limbah radioaktif untuk meningkatkan kesejahteraan rakyat. Tenaga nuklir adalah tenaga dalam bentuk apapun yang dibebaskan dalam proses transformasi inti, termasuk tenaga yang berasal dari sumber radiasi pengion.

Persyaratan dalam perizinan pemanfaatan bahan nuklir terdiri dari persyaratan umum dan persyaratan khusus. Persyaratan umum terdapat dalam Pasal 3 Peraturan Pemerintah Republik Indonesia Nomor  64 tahun 2000 tentang Perizinan Pemanfaatan Tenaga Nuklir, yaitu :

  1. Mempunyai izin usaha atau izin lain dari instansi yang bersangkutan;
  2. Mempunyai fasilitas yang memenuhi persyaratan keselamatan;
  3. Mempunyai petugas ahli yang memenuhi kualifikasi untuk pemanfaatan tenaga nuklir;
  4. Mempunyai peralatan teknik dan peralatan keselamatan radiasi yang diperlukan untuk pemanfaatan tenaga nuklir; dan
  5. Memiliki prosedur kerja yang aman bagi pekerja, masyarakat dan lingkungan hidup.

 II.3. Prosedur Penerbitan Izin Pemanfaatan Bahan Nuklir

Prosedur penerbitan izin pemanfaatan bahan nuklir cukup sederhana. Pertama-tama pemohon izin mengajukan permohonan izin dengan mengisi formulir permohonan izin pemanfaatan bahan nuklir disertai dengan dokumen persyaratan izin. Kemudian BAPETEN c.q Direktorat Perizinan Instalasi dan Bahan Nuklir (DPIBN) melakukan evaluasi. BAPETEN melaksanakan 2 (dua) jenis evaluasi terhadap setiap dokumen permohonan izin yaitu evaluasi administratif dan evaluasi teknis. Evaluasi administratif menghasilkan pernyataan bahwa dokumen permohonan izin tersebut lengkap sehingga dapat dilanjutkan ke tahap selanjutnya yaitu evaluasi teknis. Evaluasi teknis mencakup evaluasi pemenuhan terhadap kriteria penerimaan teknis. Jika diperlukan akan dilakukan verifikasi ke fasilitas pemohon izin untuk mengetahui kebenaran data yang disampaikan dan apakah fasilitas tersebut memadai. Setelah dilakukan evaluasi teknis termasuk verifikasi maka akan keluar keputusan penilaian permohonan izin. Apabila permohonan izin tersebut diterima maka DPIBN akan menyampaikan pemberitahuan tagihan pembayaran tarif PNBP izin dimaksud. Setelah pemohon izin melakukan pembayaran biaya izin, maka BAPETEN akan melakukan penerbitan izin dan pengiriman izin kepada pemohon.

III.   Pembahasan

III.1.Status Izin TENORM

Pada Tabel 2.[8] terlihat data perizinan pemanfaatan bahan nuklir (TENORM) di provinsi Bangka-Belitung sampai dengan bulan Juni 2007, yang menunjukkan bahwa PT. Koba Tin dan PT. Tambang Timah memiliki izin pemanfaatan lebih dari satu buah. PT. Koba Tin memiliki 2 (dua) buah lokasi penyimpanan yaitu di sumur 7 dan Bemban sehingga diberikan 2 (dua) buah izin pemanfaatan. PT. Tambang Timah memiliki 3 (tiga) buah lokasi penyimpanan yaitu di muntok, pemali dan kundur sehingga diberikan 3 (tiga) buah izin pemanfaatan.

PT. Bukit Timah, CV. Supplindo Nugraha Persada, CV. Donna Kembara Jaya , CV. DS. Jaya Abadi, PT. Bangka Putra Karya, dan PT. Mutiara Prima Sejahtera masing-masing memiliki 1 (satu) buah izin pemanfaatan yaitu izin pemanfaatan untuk tujuan penyimpanan. Prosentase Izin pemanfaatan yang diterbitkan oleh BAPETEN untuk menyimpan Tin Slag besarnya lebih dari 70% (tujuh puluh persen).

III.2.Hasil Evaluasi Perizinan TENORM

Smelter (perusahaan penambang/pengolah timah) dan perusahaan penyimpan TENORM cukup banyak jumlahnya di provinsi Bangka-Belitung. Sebelum tahun 2005, hanya 2 (dua) perusahaan di Provinsi Bangka Belitung yang memiliki izin pemanfaatan bahan nuklir dari BAPETEN yaitu PT. Kobatin dan PT. Tambang Timah.  Pada tahun 2005 BAPETEN melakukan sosialisasi di Provinsi Bangka Belitung dan setelah tahun tersebut hingga tahun 2007 ini sudah bertambah 7 (tujuh) perusahaan yang memiliki izin pemanfaatan bahan nuklir dari BAPETEN. Hingga saat ini telah ada 9 (sembilan) perusahaan yang memiliki izin dari BAPETEN. Karena TENORM mempunyai potensi bahaya radiasi, maka untuk memanfaatkannya diperlukan petugas ahli yang terkualifikasi dan teruji kemampuannya sesuai yang ditentukan dalam Keputusan Kepala No. 17/Ka-Bapeten/IX-99[5]. Selain itu diperlukan juga peralatan dan fasilitas yang memadai, disertai dengan prosedur kerja yang aman bagi pekerja, masyarakat dan lingkungan hidup. Persyaratan perizinan pemanfatan bahan nuklir (TENORM) adalah  sesuai dengan persyaratan pada butir II.2.

Pada Tabel 2 dapat dilihat tentang hasil evaluasi terhadap perusahaan pemohon izin pemanfaatan bahan nuklir (TENORM) yang berasal dari provinsi Bangka-Belitung untuk memenuhi ketentuan/persyaratan yang dikeluarkan oleh Bapeten. Informasi mengenai evaluasi perizinan pemanfaatan bahan nuklir (TENORM) ini diperoleh dari hasil pengumpulan data perizinan dan hasil verifikasi perizinan dengan pihak pemohon izin.

Pada Tabel 3[8] tersebut terlihat bahwa yang salah satu yang seringkali menjadi kendala dalam pemohon izin adalah kekurang tersedianya petugas ahli (dalam hal ini PPR), ada 3 (tiga) orang PPR yang bekerja di 3 (tiga) perusahaan. Hal tersebut diperbolehkan mengingat jarak antar satu tempat penyimpanan TENORM dengan tempat penyimpanan yang lain cukup berdekatan, selain itu jumlah PPR di provinsi Bangka Belitung yang terbatas juga menjadi hambatan. Sesuai dengan database di BAPETEN (Balis Online) jumlah PPR industri di Provinsi Bangka-Belitung memang hanya berjumlah ± 4 (empat) orang. [7]

 

Tabel. 2. Status Izin Pemanfaatan Bahan Nuklir (TENORM) di Provinsi Bangka Belitung s/d Juni 2007

PT. Koba Tin – Bangka,
No. No. Izin Masa Laku Bahan Nuklir Tujuan Pemanfaatan
  • 1.
215/IB/PKBN/25-II/2004 24 Pebruari 2009 Thorium alam dalam slag timah ThO. Izin Penyimpanan di daerah sumur 7.
  • 2.
295/IB/DPI/15-V/2007 14 Mei 2011 Monazite, Ilmenite da Tin Slag Izin penyimpanan di Bemban.
PT. Tambang Timah – Bangka
  • 1.
244/IB/DPIBN/7-VI/2005 Rev. 1 6 Juni 2010 Monazite High Grade, Monazite Low Grade dan Terak II. Izin Penyimpanan di Muntok.
  • 2.
251/IB/DPIBN/30-IX/2005 29 September 2010 Monazite dan Zircon Izin Penyimpanan di Pemali.
  • 3.
254/IB/DPIBN/26-X/2005 Rev. 1 25 Oktober 2010 Ilmenit dan Terak II. Izin Penyimpanan di Kundur.
CV. Supplindo Nugraha Persada – Bangka,
  • 1.
270/IB/DPI/1-VIII/2006 31 Juli 2011 Tin Slag. Pengolahan dan Penyimpanan.
PT. Mutiara  Prima Sejahtera – Bangka,
  • 1.
273/IB/DPI/29-VIII/2006 28 Agustus 2011 Monazite dan Ilemenite. Penyimpanan.
CV. DS. Jaya Abadi – Bangka,
  • 1.
284/IB/DPI/26-II/2007 25 Februari 2012 Tin Slag II. Penyimpanan.
PT. Bangka Putra Karya – Bangka,
  • 1.
285/IB/DPI/26-II/2007 25 Februari 2012 Tin Slag II. Penyimpanan.
CV. Donna Kembara Jaya – Bangka,
  • 1.
291/IB/DPI/29-III/2007 28 Maret 2012 Tin Slag. Penyimpanan.
PT. Bukit Timah – Bangka,
  • 1.
292/IB/DPI/29-III/2007 28 Maret 2012 Tin Slag. Penyimpanan.

Tabel 3. Hasil Evaluasi Terhadap Perusahaan Pemohon Izin Pemanfaatan

Bahan Nuklir (TENORM)  yang berasal dari Provinsi Bangka-Belitung

No.

Persyaratan/ketentuan

Peraturan

Hasil Kajian

Nama Perusahaan

Keterangan

1. Mempunyai izin usaha atau izin lain dari instansi yang bersangkutan; PP 64/2000pasal 3 PT. Tambang Timah , PT. Kobatin, PT. Bukit Timah, CV. Supplindo Nugraha Persada, CV. Venus Inti Perkasa, CV. Donna Kembara Jaya , CV. DS. Jaya Abadi, PT. Bangka Putra Karya, PT. Mutiara Prima Sejahtera Telah mempunyai izin usaha atau izin lain dari instansi yang bersangkutan antara lain: SIUP, TDP dan Akte notaris
2. Mempunyai fasilitas yang memenuhi persyaratan keselamatan; PP 64/2000pasal 3 PT. Tambang Timah , PT. Kobatin, PT. Bukit Timah, CV. Supplindo Nugraha Persada, CV. Venus Inti Perkasa, CV. Donna Kembara Jaya , CV. DS. Jaya Abadi, PT. Bangka Putra Karya, PT. Mutiara Prima Sejahtera Lokasi penyimpanan baik, Cukup terisolir, Lokasi tersebut dijaga oleh satpam selama 24 jam, proteksi fisik cukup baik.
3. Mempunyai petugas ahli yang memenuhi kualifikasi untuk pemanfaatan tenaga nuklir (dalam hal ini yang dimaksud adalah Petugas Proteksi Radiasi (PPR) yang sudah mendapatkan Surat Izin Bekerja (SIB) dari BAPETEN); PP 64/2000pasal 3SK No. 17/1999Pasal 6   PT. Tambang Timah Petugas Proteksi Radiasi (PPR) yang ada di PT. Tambang Timah atas nama Saudara Ebi Wibisana.
PT. Kobatin Petugas Proteksi Radiasi (PPR) yang ada di PT. Koba Tin atas nama Saudara ade kelana, selain itu Sdr. Ade kelana juga dikontrak juga sebagai PPR di CV. Supplindo Nugraha Persada dan PT. Mutiara Prima Sejahtera
PT. Bukit Timah Petugas Proteksi Radiasi (PPR) yang ada di PT. Bukit Timah atas nama Saudari Ririn Irianti, S.Si. tercatat sebagai PPR di CV. Donna Kembara Jaya. Dengan demikian  Saudari Ririn Irianti, S.Si. bekerja sebagai PPR di dua perusahaan. Diharapkan dimasa yang akan datang agar PT. Bukit Timah memiliki PPR sendiri.
CV. Supplindo Nugraha Persada Petugas Proteksi Radiasi (PPR) yang ada CV. Supplindo Nugraha Persada di atas nama Saudara Ade Kelana tercatat sebagai PPR di PT. Kobatin. Dengan demikian  Saudara Ade Kelana bekerja sebagai PPR di tiga perusahaan. Diharapkan dimasa yang akan datang agar CV. Supplindo Nugraha Persada memiliki PPR sendiri.
CV. Venus Inti Perkasa Petugas Proteksi Radiasi (PPR) yang ada di CV. Venus Inti Perkasa atas nama Saudari Rebiyanti, S.T. tercatat sebagai PPR di CV. DS. Jaya Abadi. Dengan demikian  Saudari Rebiyanti, S.T. bekerja sebagai PPR di tiga perusahaan. Diharapkan dimasa yang akan datang agar CV. Venus Inti Perkasa memiliki PPR sendiri.
CV. Donna Kembara Jaya Petugas Proteksi Radiasi (PPR) yang ada di CV. Donna Kembara Jaya atas nama Saudari Ririn Irianti, S.Si., selain itu Saudari Ririn Irianti, S.Si.juga dikontrak juga sebagai PPR di PT. Tambang Timah.
CV. DS. Jaya Abadi Petugas Proteksi Radiasi (PPR) yang ada di CV. D. Jaya Abadi atas Saudari Rebiyanti, S.T., selain itu Saudari Rebiyanti, S.T.  juga dikontrak juga sebagai PPR di PT. Bangka Putra Karya dan CV. Venus Inti Perkasa.
PT. Bangka Putra Karya Petugas Proteksi Radiasi (PPR) yang ada di PT. Bangka Putra Karya atas nama Saudari Rebiyanti, S.T. tercatat sebagai PPR di CV. DS. Jaya Abadi. Dengan demikian  Saudari Rebiyanti, S.T. bekerja sebagai PPR di tiga perusahaan. Diharapkan dimasa yang akan datang agar CV. Venus Inti Perkasa memiliki PPR sendiri.
PT. Mutiara Prima Sejahtera Petugas Proteksi Radiasi (PPR) yang ada PT. Mutiara Prima Sejahtera di atas nama Saudara Ade Kelana tercatat sebagai PPR di PT. Kobatin. Dengan demikian  Saudara Ade Kelana bekerja sebagai PPR di tiga perusahaan. Diharapkan dimasa yang akan datang agar PT. Mutiara Prima Sejahtera memiliki PPR sendiri.
4. Mempunyai peralatan teknik dan peralatan keselamatan radiasi yang diperlukan untuk pemanfaatan tenaga nuklir (surveymeter radiasi, film badge, TLD, masker, sarung tangan dan lain-lain); dan PP 64/2000pasal 3 PT. Tambang Timah , PT. Kobatin, PT. Bukit Timah, CV. Supplindo Nugraha Persada, CV. Venus Inti Perkasa, CV. Donna Kembara Jaya , CV. DS. Jaya Abadi, PT. Bangka Putra Karya, PT. Mutiara Prima Sejahtera Telah mempunyai peralatan teknik dan peralatan keselamatan radiasi yang diperlukan untuk pemanfaatan tenaga nuklir antara lain: : survey meter  radiasi, TLD, masker dan sarung tangan untuk setiap pekerja.
5. Memiliki prosedur kerja yang aman bagi pekerja, masyarakat dan lingkungan hidup.  PP 64/2000pasal 3 PT. Tambang Timah , PT. Kobatin, PT. Bukit Timah, CV. Supplindo Nugraha Persada, CV. Venus Inti Perkasa, CV. Donna Kembara Jaya , CV. DS. Jaya Abadi, PT. Bangka Putra Karya, PT. Mutiara Prima Sejahtera Prosedur kerja yang dimiliki cukup jelas dan aman bagi pekerja, masyarakat dan lingkungan hidup.

III.3.Permasalahan

Terdapat beberapa permasalahan di Provinsi Bangka belitung terkait dengan perizinan TENORM antara lain sebagai berikut:

III.3.1.Permasalahan Sosialisasi tentang TENORM di Provinsi Bangka Belitung

  • Ketidaktahuan aparatur pemerintah setempat, perusahaan penambang/penyimpan TENORM, dan masyarakat tentang adanya bahaya radiasi pada TENORM.
  • Ketidaktahuan aparatur pemerintah setempat, perusahaan penambang/penyimpan TENORM, dan masyarakat tentang wewenang BAPETEN terhadap perizinan pemanfaatan bahan nuklir (TENORM).
  • Sosialisasi yang dilakukan oleh BAPETEN belum tepat sasaran (tidak seluruh stake holder terkait diundang) yang mengakibatkan aparatur pemerintah setempat, perusahaan penambang/penyimpan TENORM, dan masyarakat belum memahami ketentuan mengenai perizinan pemanfaatan bahan nuklir (TENORM).

III.3.2.Permasalahan yang dihadapi pemohon izin pemanfaatan bahan nuklir (TENORM)

  • Kesulitan memenuhi persyaratan petugas ahli (yang biasa diterjemahkan sebagai PPR) dikarenakan belum cukup tersedianya tenaga PPR di Provinsi Bangka Belitung,

III.4. Solusi Permasalahan

III.4.1. Solusi Permasalahan Sosialisasi tentang TENORM di Provinsi Bangka Belitung

Dalam rangka meningkatkan efektivitas pengawasan diperlukan sosialisasi oleh BAPETEN tentang ketentuan ketenaganukliran terutama tentang perizinan pemanfaatan bahan buklir (TENORM) yang tepat sasaran. Sosialisasi dapat dikoordinasikan oleh unit kerja yang memiliki tupoksi sosialisasi yaitu Biro Hukum dan Organisasi. Dari sosialisasi, diharapkan seluruh stake holder terkait memahami ketentuan ketenaganukliran sehingga pemohon izinpun meningkat dan kerjasama dengan pemerintah provinsi Bangka-Belitung dapat berjalan dengan baik misalnya sebelum diterbitkannya izin ekspor TENORM ke luar negeri dari Departemen perindustrian dan perdagangan, pemohon izin terlebih dahulu diharuskan memiliki izin pemanfaatan untuk tujuan ekspor dari BAPETEN.

III.4.2. Solusi Permasalahan yang dihadapi pemohon izin pemanfaatan bahan nuklir (TENORM)

Dalam rangka memberikan solusi  yang dihadapi pemohon izin pemanfaatan bahan nuklir (TENORM) terkait dengan petugas ahli, BAPETEN sementara waktu ini memberikan kebijakan diperbolehkan perusahaan pemohon izin untuk mengontrak PPR dengan syarat lokasi fasilitas berdekatan dan mendapat persetujuan dari perusahaan tempat PPR tersebut bekerja.

IV.   Kesimpulan

Perizinan pemanfataan bahan nuklir (TENORM) harus memenuhi ketentuan yang ditetapkan oleh BAPETEN, karena TENORM memiliki kandungan zat radioaktif yang berbahaya apabila tidak diawasi.

Dalam menerbitkan izin tersebut BAPETEN c.q direktorat Perizinan Instalasi dan Bahan Nuklir memiliki cukup banyak kendala dikarenakan perusahaan pemohon izin seringkali tidak memahami persyaratan sesuai dengan ketentuan yang berlaku. Oleh karena itu  harus segera dilakukan sosialisasi ke Provinsi Bangka Belitung oleh BAPETEN yang akan dikoordinir oleh BHO tentang peraturan ketenaganukliran terutama tentang perizinan pemanfaatan bahan nuklir (TENORM).

Daftar Pustaka

  • Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  • Peraturan Pemerintah No. 64/2000 tentang Perizinan Pemanfaatan Tenaga Nuklir
  • Peraturan Pemerintah No. 26/2000 tentang Keselamatan Pengangkutan Zat Radioaktif.
  • Keputusan Kepala BAPETEN No. 019/Ka-BAPETEN/IV-00 tentang Pengecualian dari kewajiban Memiliki Izin Pamanfaatan Tenaga Nuklir
  • Keputusan Kepala Bapeten No. 17/Ka-Bapeten/IX-99 tentang Persyaratan Untuk Memperoleh Izin Bagi Petugas Pada Instalasi Nuklir Dan Instalasi Yang Memanfaatkan Radiasi Pengion.
  • Hasil kajian Tim BAPETEN di Bangka Belitung Tahun 2002
  • Balis Online, Data Base Petugas Proteksi Radiasi
  • Dokumen perizinan pemanfaatan bahan nuklir

 

 

 

Posted in Nuclear Licensing | Tagged , , | 7 Comments

Kajian Terhadap Pelaksanaan Evaluasi Keselamatan Permohonan Persetujuan Eksperimen Pada Reaktor Penelitian di Indonesia

 

KAJIAN TERHADAP PELAKSANAAN EVALUASI KESELAMATAN PERMOHONAN PERSETUJUAN EKSPERIMEN PADA REAKTOR PENELITIAN DI INDONESIA

ABSTRAK

KAJIAN TERHADAP PELAKSANAAN EVALUASI KESELAMATAN PERMOHONAN PERSETUJUAN EKSPERIMEN PADA REAKTOR PENELITIAN DI INDONESIA. Telah dilakukan evaluasi keselamatan terhadap permohonan persetujuan eksperimen pada RSG GA Siwabessy, Reaktor TRIGA 2000. Evaluasi keselamatan ditujukan untuk menjamin bahwa eksperimen yang dilakukan tidak akan memiliki dampak pelepasan zat radioaktif ke pekerja, masyarakat dan lingkungan hidup. Persetujuan ekperimen yang telah diterbitkan pada reaktor TRIGA 2000 adalah persetujuan uji cicip panas. Persetujuan ekperimen yang telah diterbitkan pada RSG GA Siwabessy adalah Persetujuan Tetap Fasilitas Iradiasi Produksi I-125, Persetujuan Tetap Fasilitas Iradiasi Batu Topaz, Persetujuan Pengujian Absorber Ag-In-Cd.

Tujuan kajian terhadap pelaksanaan evaluasi keselamatan permohonan persetujuan ekperimen pada reaktor penelitian adalah untuk menyampaikan permasalahan yang dihadapi BAPETEN, khususnya Direktorat Perizinan Instalasi dan Bahan Nuklir, dalam  pelaksanaan pengawasan pemanfaatan reaktor penelitian serta solusi agar kegiatan pengawasan tersebut dapat dilakukan secara efektif mengikuti ketentuan-ketentuan yang berlaku.

 Kata kunci: Persetujuan Eksperimen, reaktor penelitian.

 ABSTRACT

SAFETY EVALUATION IMPLEMENTATION FOR EXPERIMENT PERMIT OF RESEARCH REACTORS IN INDONESIA. Safety evaluation on application experiment permit at GA Siwabessy reactor and TRIGA 2000 reactor have been done. Safety evaluation in the form of licensing is required to ensured nuclear safety for worker, people and environment from radioactive releases. Experiment permit have been issued by BAPETEN for TRIGA 2000 reactor is hot shipping permit. Experiment permit have been issued by BAPETEN for GA Siwabessy  reactor is permanent irradiation I-125 facility  permit, permanent irradiation Topaz facility  permit, and Absorber Ag-In-Cd Testing Permit.

This paper described the problems which have been faced by BAPETEN, especially the Directorate for License of Nuclear Installations and materials, in controlling the utilization of research  reactor facility and  also the solution to ensure that the implementation can be conducted effectively following the establish requirement.

Keywords: Experiment permit, research reactors.

I. Pendahuluan

Di Indonesia terdapat 3 (tiga) reaktor penelitian yang dimiliki/dioperasikan oleh Badan Tenaga Nuklir Nasional (BATAN), yaitu

  • Reaktor Kartini (100 kW) yang dioperasikan oleh Pusat Teknologi Akselerator dan Proses Bahan (PTAPB) – BATAN Yogyakarta;
  • Reaktor TRIGA 2000 Bandung (2000 kW) yang dioperasikan oleh Pusat Teknologi Nuklir Bahan dan Radiometri (PTNBR) – BATAN Bandung;
  • Reaktor Serba Guna G.A. Siwabessy (30 MW) yang dioperasikan oleh Pusat Reaktor Serba Guna (PRSG) – BATAN Serpong.

Untuk mengoperasikan 3 (tiga) reaktor penelitian pengusaha insatalasi nuklir (organisasi pengoperasi instalasi nuklir) harus memiliki izin, sesuai yang dipersyaratkan dalam Undang-undang No. 10 tahun 1997 Pasal 17 ayat (2) Pembangungan dan pengoperasian reaktor nuklir dan instalasi nuklir lainnya serta dekomisioning reaktor wajib memiliki izin1.

Reaktor penelitian dapat dimanfaatkan untuk berbagai keperluan berikut :

(a)     Reaktornya sendiri memproduksi hasil eksperimen;

(b)     Iradiasi cuplikan dan bahan untuk produksi radionuklida;

(c)     Peralatan eksperimen dimasukkan dalam teras atau daerah reflektor dari reaktor;

(d)     Berkas neutron diambil dari teras untuk keperluan eksperimen.

Pemanfaatan reaktor dianalisis keselamatannya dalam Laporan Analisis Keselamatan (LAK). Apabila terdapat eksperimen baru, setiap eksperimen baru harus dinilai kepentingan keselamatannya melalui suatu prosedur yang ditetapkan secara intern. Bila diputuskan bahwa eksperimen ini ternyata menyangkut kepentingan keselamatan yang besar maka usulan eksperimen tersebut harus disampaikan kepada panitia keselamatan (intern) dan BAPETEN untuk dinilai dan disetujui. Kriteria untuk kepentingan keselamatan adalah sama dengan kriteria untuk modifikasi.

Tujuan kajian terhadap pelaksanaan evaluasi keselamatan permohonan persetujuan eksperimen pada reaktor penelitian di Indonesia adalah untuk mengetahui apakah  organisasi pengoperasi telah mematuhi ketentuan yang dikeluarkan oleh BAPETEN (Badan Pengawas Tenaga Nuklir). Dalam makalah ini dilakukan kajian terhadap pelaksanaan evaluasi keselamatan permohonan persetujuan eksperimen pada reaktor penelitian di Indonesia khususnya di RSG GA Siwabessy dan Reaktor TRIGA 2000 untuk mengetahui organisasi pengoperasi (PRSG dan PTNBR) telah mengimplementasikan ketentuan/persyaratan dari BAPETEN atau tidak.

II. Bahan

II.1.Peraturan

Pelatihan, kualifikasi dan penerbitan surat izin bekerja petugas reaktor didasarkan pada peraturan sebagai berikut :

  • Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  • Peraturan pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir
  • Peraturan pemerintah No. 63 tahun 2000 tentang Keselamatan Dan Kesehatan Terhadap Pemanfaatan Radiasi Pengion.
  • Keputusan Kepala Bapeten No. 06/Ka-BAPETEN/V-99 tentang Pembangunan dan Pengoperasian Reaktor Nuklir.
  • Keputusan Kepala Bapeten No. 10/Ka-Bapeten/VI-99 tentang Ketentuan Keselamatan Operasi Reaktor Penelitian
  • Keputusan Kepala Bapeten No. 05/Ka-Bapeten/V-99 tentang Ketentuan Keselamatan Disain Reaktor Penelitian

II.3. Persyaratan untuk memperoleh persetujuan ekperimen

Persyaratan untuk memperoleh persetujuan ekperimen yang diizinkan adalah sebagai berikut5 :

a. Jika reaktor itu sendiri digunakan untuk memproduksi hasil eksperimen, prosedur harus dibuat untuk menjamin agar kondisi dan batasan operasi terpenuhi.

b. Semua peralatan eksperimen yang berada di dalam atau dihubungkan langsung dengan reaktor harus didesain dengan standar yang sama dengan standar reaktor itu sendiri dan harus benar-benar sesuai dengan bahan yang digunakan, integritas struktur, dan keselamatan radiologi.

c. Jika peralatan eksperimen menembus batas reaktor maka peralatan tersebut didesain sedemikian sehingga dapat melindungi pengungkung dan perisai reaktor.

d. Sistem proteksi pada peralatan eksperimen harus didesain sedemikian sehingga dapat melindungi baik peralatan maupun reaktor dari bahaya yang timbul dari peralatan eksperimen tersebut.

e. Setiap eksperimen baru harus dinilai kepentingan keselamatannya melalui suatu prosedur yang ditetapkan secara intern. Bila diputuskan bahwa eksperimen ini ternyata menyangkut kepentingan keselamatan yang besar maka usulan eksperimen tersebut harus disampaikan kepada panitia keselamatan (intern) dan BAPETEN untuk dinilai dan disetujui. Kriteria untuk kepentingan keselamatan adalah sama dengan kriteria untuk modifikasi, yaitu:

  • Melibatkan perubahan terhadap batasan keselamatan yang disetujui.
  • Melibatkan perubahan terhadap batasan kondisi operasi aman yang disetujui.
  • Mempengaruhi barang yang sangat penting untuk keselamatan.
  • Mengakibatkan bahaya yang berbeda sifatnya atau kemungkinan terjadinya lebih besar dari pada yang dipertimbangkan sebelumnya, atau secara berarti mengurangi margin keselamatan yang ada.

f. Suatu modifikasi yang dilakukan terhadap peralatan eksperimen harus diperlakukan melalui prosedur yang sama dengan prosedur yang digunakan untuk peralatan eksperimen asli.

g. Pemakaian dan penanganan peralatan eksperimen harus dikendalikan dengan prosedur tertulis. Prosedur ini harus memperhitungkan pengaruh eksperimen pada reaktor, terutama perubahan reaktivitas.

h. Pelaksanaan eksperimen harus dioptimasi dengan penekanan pada pengurangan paparan radiasi terhadap personil yang terlibat (ALARA).

II.4.  Permohonan Izin

Permohonan izin diajukan oleh Pengusaha Instalasi Nuklir dengan melampirkan5 :

a. Prosedur untuk mengatur usulan eksperimen. Usulan eksperimen tersebut hendaknya memuat:

  • Uraian tentang tujuan dan maksud pelaksanaan eksperimen;
  • Cara penggabungan peralatan eksperimen dengan sistem reaktor;
  • Pemilihan dan pembenaran ketentuan yang digunakan dalam desain peralatan eksperimen;
  • Pengkajian keselamatan peralatan, baik untuk peralatan itu sendiri maupun pengaruhnya terhadap keselamatan reaktor dan personil;
  • Persyaratan untuk pembuatan dan pengesahan dokumen perawatan dan pengoperasian khusus;
  • Persyaratan untuk pelatihan khusus bagi personil perawatan dan pengoperasi;
  • Persyaratan uji fungsi dan komisioning;
  • Dekomisioning;
  • Program JK yang digunakan;
  • Usulan penanganan limbah radioaktif yang dihasilkan dari eksperimen;
  • Prosedur untuk menjamin komunikasi yang memadai antara operator dan pelaksana eksperimen.

b. Jadwal pelaksanaan rencana pelaksanaan ekperimen

c. Dokumen terkait lainnya

II.5.  Persetujuan Eksperimen

Persetujuan ekperimen dikeluarkan oleh Bapeten setelah dilakukan evaluasi keselamatan dan dapat disimpulkan bahwa pelaksanaan ekperimen tersebut tidak kontraproduktif dengan tujuan keselamatan yaitu tidak menimbulkan dampak negatif terhadap pekerja, masyarakat  dan lingkungan hidup. Serta pemohon izin dianggap benar-benar mampu melaksanakan ekperimen tersebut dengan aman dan selamat.

III. Permohonan Izin dan Pelaksanaan Evaluasi Keselamatan

III.1. Reaktor TRIGA 2000 Bandung

Uji Cicip

Pada akhir 2004, diketemukan adanya permasalahan timbulnya gelembung dari air tangki reaktor apabila reaktor dioperasikan pada daya tinggi. Oleh karena itu, pada tanggal 15 Januari 2005 BAPETEN membatasi operasi Reaktor TRIGA 2000 Bandung sampai dengan daya 1250 KWt. Dari hasil pemeriksaan lebih lanjut oleh BAPETEN dibantu oleh expert IAEA sepanjang tahun 2005, diketemukan indikasi keberadaan produk fisi di air tangki reaktor. Sehubungan dengan permasalahan tersebut diatas, pada Revisi Izin Operasi No.: 208/IO/DPI/20-I/2003 Rev.1 diberikan kondisi bahwa Reaktor TRIGA 2000 Bandung hanya boleh dioperasikan dalam rangka penyelesaian permasalahan tersebut sampai BAPETEN menyatakan permasalahan tersebut telah dapat diselesaikan.

Dalam rangka menyelesaikan permasalahan tersebut PTNBR mula-mula melakukan uji cicip dingin, yaitu dengan merendam Elemen Bakar satu per satu dalam tabung uji tanpa mengoperasikan reaktor dan kemudian dilakukan pemeriksaan kandungan radionuklida dalam air hasil rendaman. Metode tersebut ternyata tidak dapat diandalkan, sehingga PTNBR kemudian merencanakan untuk melakukan uji cicip panas, yaitu dengan cara yang hampir sama tetap dengan kondisi reaktor dioperasikan. Mengingat adanya potensi dampak keselamatan yang cukup besar dalam pengujian ini, maka diperlukan persetujuan BAPETEN terlebih dahulu.

Permohonan persetujuan uji cicip panas pertama kali disampaikan pada tanggal 5 Juli 2006 melalui surat No.: T-2762/BN.0201/VII/2006 dengan melampirkan:

  • Laporan dan Tindak Lanjut Kegiatan Pendeteksian Kebocoran Elemen Bakar Reaktor TRIGA 2000 Bandung;
  • Prosedur Kerja Pendeteksian Kebocoran Elemen Bakar Dengan Metode Uji Cicip (No. dok.: PK 06 RE 002);
  • Prosedur Kerja Pendeteksian Kebocoran Elemen Bakar Dengan Metode Uji Cicip Panas (No. dok.: PK 06 RE 003); dan
  • Analisis Keselamatan Uji Cicip Panas di Reaktor TRIGA 2000 Bandung.

PTNBR mengharapkan agar persetujuan uji cicip dapat diberikan secepatnya.

Setelah melakukan dua tahapan evaluasi BAPETEN dan perbaikan dokumen oleh PTNBR serta dua kali pertemuan pembahasan antara BAPETEN dan PTNBR, pada tanggal 27 Desember 2006 BAPETEN menerbitkan Persetujuan Uji Cicip Panas No.: 368/SPE/DPIBN/27-XII/2006. Persetujuan Uji Cicip Panas diberikan dengan kondisi:

  • Uji Cicip Panas hanya boleh dilaksanakan dengan daya reaktor tidak melampaui 300 kW;
  • Selama pelaksanaan Uji Cicip Panas, wajib dilaksanakan pengamatan terhadap kemungkinan terjadinya pendidihan pada air dalam tabung uji;
  • Apabila terdapat indikasi adanya pendidihan maka fasilitas wajib menghentikan seluruh kegiatan pengujian dan segera melaporkannya kepada BAPETEN; dan
  • PTNBR diminta menyampaikan jadwal pelaksanaan Uji Cicip Panas.

 III.2. Reaktor Serba Guna G.A. SIWABESSY

Fasilitas Iradiasi Produksi Iodium-125

Dalam rangka produksi I-125, pada tanggal 10 Oktober 2002 PRSG mengajukan permohonan izin iradiasi gas X-124 untuk produksi I-125. BAPETEN secara bertahap memberikan serangkaian persetujuan uji dingin dan persetujuan uji panas. Terakhir, perpanjangan perpanjangan persetujuan uji panas diberikan melalui surat No. 1814/PN 00 03/PIBN/X-05  dengan masa laku 6 (enam) bulan sampai dengan 14 April 2006.

Selanjutnya pada tanggal 26 April 2006, melalui surat No. 601/PN 00 03/PIBN/IV-06  BAPETEN mengingatkan PRSG bahwa Persetujuan Uji Panas Fasilitas Produksi I-125 telah berakhir masa lakunya dan bahwa PRSG diharap segera menyampaikan laporan uji panas Fasilitas Produksi I-125 tersebut. Pada tanggal 21 Juni 2006 melalui surat No. 381/KN 03 01/VI/2006 PRSG mengajukan permohonan persetujuan tetap Fasilitas Produksi I-125 dengan melampirkan laporan uji panas. Setelah melakukan evaluasi, BAPETEN menilai Fasilitas Produksi I-125 tersebut memenuhi persyaratan keselamatan. Pada tanggal 7 Juli 2006 BAPETEN memberikan Persetujuan Tetap Fasilitas Produksi I-125 No. 346/SPE/DPIBN/4-VII-06.

Fasilitas Iradiasi Batu Topaz

Sehubungan dengan permintaan dari Koperasi Pegawai-Warga “DAGSTAN” (KOWABA DAGSTAN) untuk melakukan irradiasi batu topaz di teras RSG-GAS, maka pada tanggal 12 Februari 2004 PRSG mengajukan permohonan izin Irradiasi Batu Topaz. BAPETEN secara bertahap memberikan serangkaian persetujuan uji dingin dan persetujuan uji panas. Terakhir, perpanjangan perpanjangan persetujuan uji panas diberikan melalui surat No. 1872/PN 00 03/PIBN/X-05 dengan masa laku sampai dengan 28 April 2006.

 Selanjutnya pada tanggal 10 Maret 2006 melalui surat No. 161/KN.03.01/III/2006 PRSG  kembali mengajukan permohonan izin tetap Fasilitas Iradiasi Batu Topaz. Setelah melakukan evaluasi terhadap dokumen Kajian Keselamatan Fasilitas Iradiasi Batu Topaz (No. Indent.: RSG.OR.01.02.42.06 rev. 3) dan Laporan Uji Panas Fasilitas Irradiasi Batu Topaz, dan setelah melakukan klarifikasi terhadap jumlah batu topaz yang telah diiradiasi dan jumlah batu topaz yang telah dikirim ke Jerman, BAPETEN menyimpulkan bahwa Fasilitas Irradiasi Batu Topaz tersebut memenuhi persyaratan keselamatan dan bahwa seluruh batu topaz yang diiradiasi dri RSG-GAS akan dikirim oleh KOWABA-DAGSTAN ke Jerman. Pada tanggal 17 April 2006 BAPETEN menerbitkan Persetujuan Tetap Fasilitas Iradiasi Batu Topaz melalui surat No. 512/PN 00 03/PIBN/IV-06 dengan ketentuan bahwa PRSG wajib melaporkan neraca jumlah batu Topaz yang sudah diiradiasi dan yang masih tersimpan di PRSG pada akhir siklus operasi RSG-GAS.

Pengujian Absorber Ag-In-Cd

Dalam rangka penggantian batang absorber RSG-GAS buatan NUKEM (Jerman), pada tanggal 31 Oktober 2005 PRSG mengajukan permohonan izin pengujian absorber Ag-In-Cd buatan PT. BATAN Teknologi dengan melamprirkan LAK Uji Irradiasi Absorber Ag-In-Cd Tipe Garpu di teras RSG-GAS (No. Ident.:TRR.TR.01.04.31.05 rev. 0) dan dokumen pembuatan Absorber Ag-In-Cd dari PT.Batan Teknologi. Mula-mula BAPETEN memberikan Persetujuan Uji Dingin Absorber Ag-In-Cd melalui surat No. 1983A/PN 00 03/PIBN/XI-05 dengan masa laku 6 (enam) bulan sampai dengan tanggal 10 Mei 2006.

Pada tanggal 26 April 2006 melalui surat No. 601/PN 00 03/PIBN/IV-06 BAPETEN mengingatkan bahwa masa laku Persetujuan Uji Dingin Absorber Ag-In-Cd akan berakhir. Selanjutnya, pada tanggal 15 Mei 2006  PRSG meminta perpanjangan izin uji dingin sampai dengan tanggal 25 Mei 2006 karena pelaksanaan kegiatan tersebut belum dapat diselesaikan. Berdasarkan permintaan tersebut, BAPETEN menerbitkan perpanjangan Persetujuan Uji Dingin Absorber Ag-In-Cd sampai dengan 25 Mei 2006 dengan ketentuan bahwa PRSG wajib melaporkan hasil uji dingin.

Pada tanggal 18 Mei 2006 melalui surat No. 317/KN 03 01/V/2006 PRSG mengajukan permohonan persetujuan pengujian absorber Ag-In-Cd dengan menyampaikan LAK Uji Irradiasi Absorber Ag-In-Cd Tipe Garpu di Teras RSG-GAS (No. Ident.:TRR.TR.01.04.31.05 rev. 1) dan Program Uji Panas Absorber Ag-In-Cd Tipe Garpu di Teras RSG-GAS (No. Ident.: RSG.SR.01.04.30.06 rev. 0).

Setelah melalui empat tahapan proses evaluasi oleh BAPETEN, pembahasan antara BAPETEN dan PRSG, serta perbaikan dokumen oleh PRSG, pada akhirnya BAPETEN menilai bahwa kegiatan uji panas absorber Ag-In-Cd tidak menimbulkan dampak yang membahayakan keselamatan radiasi dan kesehatan pekerja, masyarakat dan lingkungan hidup. Dengan demikian pada tanggal 19 Oktober 2006 BAPETEN memberikan persetujuan uji panas absorber Ag-In-Cd No. 365/SPE/DPIBN/19-X/2006 dengan ketentuan:

  • Persetujuan uji panas tersebut hanya berlaku untuk tahap pengujian: 1) uji mekanikal, 2) uji waktu jatuh absorber uji sebelum iradiasi, 3) iradiasi absorber uji ag-in-cd pada daya tinggi, 4) uji waktu jatuh absober uji ag-in-cd pada daya tinggi, 4) uji waktu jatuh absorber uji setelah iradiasi dan 5) pemeriksaan absorber uji secara visual.
  • Sebelum melakukan uji netronik dengan memasang absorber uji menggantikan salah satu batang kendali, PSRG wajib mengajukan permohonan persetujuan insersi dengan menyampaikan laporan hasil uji panas diatas dan jadwal pelaksanaan uji neutronik.

 IV. Permasalahan dan Solusi

Dalam melaksanakan evaluasi keselamatan terhadap permohonan persetujuan ekperimen pada reaktor penelitian ditemukan cukup banyak kendala antara lain:

a. Secara Eksternal:

  • Tanggapan terhadap Laporan Hasil Evaluasi dari para pengguna sangat lambat, dan tidak sesuai dengan rekomendasi, sehingga menghambat proses perizinan. Hambatan yang muncul adalah BAPETEN diharuskan melakukan evaluasi terhadap permohonan persetujuan yang sama berulangkali. Seperti diperlihatkan pada Tabel 1.
  • Dalam rangka mengatasi kendala tersebut, BAPETEN c.q DPIBN mencoba selain melakukan evaluasi pembahasan bersama tim evaluator diadakan pula pembahasan secara teknis dengan pemohon izin dengan mengundang fasilitas dalam hal ini BATAN (PRSG dan PTNBR). Kegiatan tersebut bertujuan untuk memperoleh tanggapan, dan mengetahui kendala yang berarti dari pemohon izin sehingga mengakibatkan tindaklanjut menjadi begitu lambat serta menyamakan persepsi bersama sehingga kendala-kendala pada pelaksanaan penilaian dan kecukupan dokumen dapat diatasi dengan baik.
  • Pihak pemohon izin seringkali terlambat memperpanjang persetujuan yang telah habis masa lakunya. Dalam rangka mengatasi kendala tersebut, BAPETEN c.q. DPIBN mengirimkan surat teguran.

 b. secara internal:

  • SDM Tim evaluator BAPETEN selain berasal dari DPIBN juga berasal dari unit kerja lain, yang memiliki kesibukan dengan kegiatan di Unit Kerjanya sehingga keterlibatannya tidak optimal. Dalam rangka mengatasi kendala tersebut, BAPETEN c.q DPIBN melakukan upaya dengan peningkatan kualitas SDM dari DPIBN dan membangun komitmen evaluator sehingga memiliki kualitas dan sense of belonging yang baik.

Tabel 1 : Hasil Evaluasi Keselamatan Permohonan Persetujuan Ekperimen di Reaktor Penelitian

No.

Reaktor Penelitian

Permohonan Persetujuan Ekperimen

Hasil Evaluasi Keselamatan

1. Reaktor Triga 2000 Uji Cicip Panas Evaluasi keselamatan dilakukan sejak bulan Juli-Desember 2006.Setelah melakukan dua tahapan evaluasi BAPETEN dan perbaikan dokumen oleh PTNBR serta dua kali pertemuan pembahasan antara BAPETEN dan PTNBR, BAPETEN menerbitkan Persetujuan Uji Cicip panas.
2. RSG GA Siwabessy Fasilitas Iradiasi Produksi Iodium-125  Evaluasi keselamatan dilakukan sejak bulan Oktober 2002 s/d Juli 2006.Setelah melakukan berkali-kali tahapan evaluasi BAPETEN dan perbaikan dokumen oleh PRSG serta pertemuan pembahasan antara BAPETEN dan PRSG, BAPETEN menerbitkan Persetujuan Tetap Fasilitas Iradiasi Produksi I-125.
Fasilitas Iradiasi Batu Topaz  Evaluasi keselamatan dilakukan sejak bulan Februari 2004 s/d April 2006.Setelah melakukan berkali-kali tahapan evaluasi BAPETEN dan perbaikan dokumen oleh PRSG serta pertemuan pembahasan antara BAPETEN dan PRSG, BAPETEN menerbitkan Persetujuan Tetap Fasilitas Iradiasi Batu Topaz.
Pengujian Absorber Ag-In-Cd  Evaluasi keselamatan dilakukan sejak bulan Oktober 2005-Oktober 2006.Setelah melakukan empat tahapan evaluasi BAPETEN dan perbaikan dokumen oleh PTNBR serta  pertemuan pembahasan antara BAPETEN dan PRSG, BAPETEN menerbitkan Persetujuan Pengujian Absorber Ag-In-Cd.

 V. Kesimpulan

Pemberian Persetujuan ekperimen harus memenuhi ketentuan yang dikeluarkan oleh BAPETEN, terutama bagi ekperimen yang memiliki kriteria:

  • Melibatkan perubahan terhadap batasan keselamatan yang disetujui.
  • Melibatkan perubahan terhadap batasan kondisi operasi aman yang disetujui.
  • Mempengaruhi barang yang sangat penting untuk keselamatan.
  • Mengakibatkan bahaya yang berbeda sifatnya atau kemungkinan terjadinya lebih besar dari pada yang dipertimbangkan sebelumnya, atau secara berarti mengurangi margin keselamatan yang ada.

Dari hasil evaluasi keselamatan dapat disimpulkan bahwa organisasi pengoperasi reaktor TRIGA 2000 dan RSG GA Siwabessy telah mematuhi ketentuan yang diberlakukan oleh Bapeten dalam melaksanakan ekperimen yang memerlukan persetujuan BAPETEN tersebut. Akan tetapi dalam melaksanakan pemenuhan ketentuan BAPETEN tersebut kerapkali BAPETEN perlu melakukan evaluasi keselamatan sehingga organisasi pengoperasi dapat membuktikan bahwa ekperimen tersebut aman bagi pekerja, masyarakat dan lingkungan hidup.

 VI.  Daftar Acuan

  1. Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  2. Peraturan pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir
  3. Peraturan pemerintah No. 63 tahun 2000 tentang Keselamatan Dan Kesehatan Terhadap Pemanfaatan Radiasi Pengion.
  4. Keputusan Kepala Bapeten No. 06/Ka-BAPETEN/V-99 tentang Pembangunan dan Pengoperasian Reaktor Nuklir.
  5. Keputusan Kepala Bapeten No. 10/Ka-Bapeten/VI-99 tentang Ketentuan Keselamatan Operasi Reaktor Penelitian
  6. .Keputusan Kepala Bapeten No. 05/Ka-Bapeten/V-99 tentang Ketentuan Keselamatan Disain Reaktor Penelitian
  7. Dokumen perizinan pemanfaatan bahan nuklir

 

Posted in Nuclear Safety Assesment | Tagged , , , , , , , , | Leave a comment

Kesiapan Evaluasi Perizinan Tapak Dalam Rangka Menyongsong Era PLTN di Indonesia

KESIAPAN EVALUASI PERIZINAN TAPAK DALAM RANGKA  MENYONGSONG ERA PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DI INDONESIA

 

Abstrak

Kesiapan Evaluasi Perizinan Tapak Dalam Rangka  Menyongsong Era Pembangkit Listrik Tenaga Nuklir (PLTN) Di Indonesia. Cadangan bahan bakar minyak (BBM) semakin menipis dan semakin tinggi harganya di pasaran dunia, opsi pemanfaatan Pembangkit Listrik Tenaga Nuklir (PLTN) telah diperhitungkan untuk ikut serta memenuhi permintaan tenaga listrik melalui jaringan listrik nasional. Dalam menghadapi pembangunan dan pengoperasian PLTN tersebut, BAPETEN sebagai Badan Pengawas Tenaga Nuklir melakukan penyiapan infrastruktur pengawasan PLTN baik berupa pembentukan peraturan, perizinan, review dan penilaian, inspeksi dan penegakan hukum sesuai dengan yang  diamanatkan pada UU 10 tahun 1997 tentang ketenaganukliran. Makalah ini menguraikan tentang pengawasan BAPETEN dalam  pembangunan dan pengoperasian PLTN. Pembahasan tentang proses review dan penilaian untuk memastikan dipenuhinya persyaratan izin pembangunan dan pengoperasian PLTN dalam rangka penerbitan izin sesuai regulasi ketenaganukliran, dan pertimbangan norma dan praktek internasional. Pada akhirnya pembangunan dan pengoperasian PLTN dapat terjamin keselamatannya terhadap pekerja, masyarakat dan lingkungan hidup.

Keyword : PLTN, Peraturan Ketenaganukliran

Abstract                                   

The Preparation on Evaluation Site Permit on welcoming the era of Nuclear Power Plants (NPPs) in Indonesia. The oil fuel supply is getting low and high price in world market, The option using Nuclear power plants have been considered to answer Indonesia electrical demand.This paper describes BAPETEN’s regulatory control on the establishment and operation of nuclear power plants. The discussion on the review and assessment process is provided to ensure the compliance on the license requirements for the establishment and operation of nuclear power plants in accordance with nuclear regulation, as well as international norm and practice. Futhermore the safety operation of NPP for worker, people and evironment from radioactive release.

Keyword : NPP, Nuclear regulations

PENDAHULUAN

Sejalan dengan perkembangan pembangunan nasional, peningkatan kemajuan ekonomi dan kesejahteraan rakyat secara keseluruhan maka mau tidak mau akan memerlukan energi dalam jumlah besar. Kebutuhan energi antara lain berupa energi listrik yang diperoleh dari berbagai sumber pembangkitan misalnya dari pusat listrik tenaga air, pusat listrik tenaga minyak, dan termasuk pusat listrik tenaga nuklir. Pemanfaatan tenaga nuklir sebagai pembangkit tenaga listrik di masa datang merupakan tumpuan yang dapat diandalkan karena teknologi PLTN aman, andal, bersih dan berwawasan lingkungan serta relatif ekonomis.

Cadangan bahan bakar minyak (BBM) semakin menipis dan semakin tinggi harganya di pasaran dunia, opsi pemanfaatan Pembangkit Listrik Tenaga Nuklir (PLTN) telah diperhitungkan untuk ikut serta memenuhi permintaan tenaga listrik melalui jaringan listrik nasional.

Kegiatan studi kelayakan pembangunan PLTN di Indonesia telah dimulai sejak dilaksanakan seminar tentang kemungkinan adanya pembangunan PLTN di Indonesia yang dilaksanakan di Karangkates, Malang tahun 1976. Sejak saat itu giat dilaksanakan pemilihan calon tapak yang akan digunakan sebagai usulan tapak PLTN, kegiatan studi ekonomi, studi keselamatan dan teknologi PLTN dan lain sebagainya. Studi kelayakan terakhir dilaksanakan pada sekitar tahun 1993-1996 yang dilakukan oleh NewJec.

Dalam menghadapi pembangunan dan pengoperasian PLTN tersebut, BAPETEN sebagai Badan Pengawas Tenaga Nuklir melakukan penyiapan infrastruktur pengawasan PLTN baik berupa pembentukan peraturan, perizinan, review dan penilaian, inspeksi dan penegakan hukum sesuai dengan yang  diamanatkan pada Undang-undang 10 tahun 1997 tentang ketenaganukliran.

TUJUAN

Tujuan utama dari evaluasi perizinan tapak adalah untuk mengatur bahwa calon tapak PLTN yang akan digunakan sebagai calon tempat dibangunnya PLTN telah memenuhi ketentuan keselamatan pembangunan dan pengoperasian PLTN.

PERSYARATAN  IZIN TAPAK

Persyaratan penerbitan izin tapak PLTN didasarkan pada peraturan sebagai berikut :

  • Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  • Peraturan Pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir.

Dalam Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran pasal 17 ayat (1) diterangkan bahwa, setiap pemanfaatan tenaga nuklir wajib memiliki izin, kecuali dalam hal-hal tertentu yang diatur lebih lanjut dengan peraturan pemerintah.

Dalam Peraturan Pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir, Pasal 5 ayat 3, Pembangunan, pengoperasian, dan dekomisioning reaktor daya komersial dilaksanakan oleh Badan Usaha Milik Negara, koperasi, dan/atau badan swasta. Setiap pelaksanakan pembangunan, pengoperasian, dan dekomisioning reaktor nuklir sebagaimana dimaksud dalam Pasal 5 wajib memiliki izin dari Kepala BAPETEN. Izin tersebut diberikan secara bertahap, meliputi: Izin Tapak; Izin Konstruksi; Izin Komisioning; Izin Operasi; dan Izin Dekomisioning.

Sebelum mengajukan permohonan izin tapak pemohon harus melaksanakan kegiatan evaluasi tapak.Kegiatan evaluasi tapak dilakukan setelah memenuhi persyaratan evaluasi tapak. Persyaratan meliputi program evaluasi tapak dan program jaminan mutu evaluasi tapak.

Setelah melakukan kegiatan evaluasi tapak pemohon dapat mengajukan izin tapak. Untuk mendapatkan izin tapak, pemohon harus mengajukan permohonan kepada Kepala BAPETEN dengan melampirkan dokumen persyaratan administrasi dan dokumen persyaratan teknis.

Persyaratan administrasi untuk permohonan izin tapak adalah sebagai berikut:

  1. bukti pembentukan Badan Pelaksana, Badan  Usaha Milik Negara, koperasi, dan/atau badan swasta;
  2. izin atau persyaratan lain sesuai peraturan  perundang-undangan.

Persyaratan teknis untuk permohonan izin tapak adalah sebagai berikut:

  1. laporan evaluasi tapak;
  2. data utama reaktor nuklir yang akan dibangun;
  3. Daftar Informasi Desain pendahuluan; dan
  4. rekaman pelaksanaan program jaminan mutu evaluasi tapak.

Tahap untuk izin tapak dapat dilihat pada Gambar 1. BAPETEN melakukan review dan penilaian seluruh kelengkapan persyaratan perizinan untuk tapak PLTN yang diajukan.

 Gambar 1. Tahapan Perizinan Tapak PLTN

PROSEDUR PENERBITAN IZIN TAPAK PLTN

Prosedur penerbitan izin pemanfaatan bahan nuklir cukup sederhana (lihat pada Gambar 2). Pertama-tama pemohon izin mengajukan permohonan izin dengan mengisi formulir permohonan izin tapak PLTN disertai dengan dokumen persyaratan izin. Kemudian BAPETEN c.q Direktorat Perizinan Instalasi dan Bahan Nuklir (DPIBN) melakukan evaluasi. BAPETEN melaksanakan 2 (dua) jenis evaluasi terhadap setiap dokumen permohonan izin yaitu evaluasi administratif dan evaluasi teknis. Evaluasi administratif menghasilkan pernyataan bahwa dokumen permohonan izin tersebut lengkap sehingga dapat dilanjutkan ke tahap selanjutnya yaitu evaluasi teknis. Evaluasi teknis mencakup evaluasi pemenuhan terhadap kriteria penerimaan teknis. Jika diperlukan akan dilakukan verifikasi ke fasilitas pemohon izin untuk mengetahui kebenaran data yang disampaikan dan apakah fasilitas tersebut memadai. Setelah dilakukan evaluasi teknis termasuk verifikasi maka akan keluar keputusan penilaian permohonan izin. Apabila permohonan izin tersebut diterima maka DPIBN akan menyampaikan pemberitahuan tagihan pembayaran tarif PNBP izin dimaksud. Setelah pemohon izin melakukan pembayaran biaya izin, maka BAPETEN akan melakukan penerbitan izin dan pengiriman izin kepada pemohon.

 

Gambar 2. Prosedur Perizinan Instalasi dan Bahan Nuklir

 JANGKA WAKTU IZIN TAPAK

Dalam Peraturan Pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir, terdapat ketentuan tentang jangka waktu penilaian dan perbaikan dokumen persyaratan izin tapak serta waktu berlakunya izin tapak yaitu sebagai berikut:

1. Jangka Waktu Penilaian dan Perbaikan dokumen persyaratan izin tapak

  • Pernyataan kelengkapan dokumen diberikan dalam jangka waktu paling lama 1 (satu) bulan.
  • Dalam hal dokumen dinyatakan tidak lengkap, BAPETEN mengembalikan dokumen tersebut kepada pemohon.
  • Dalam hal dokumen dinyatakan lengkap, BAPETEN melakukan penilaian persyaratan administrasi dan teknis.
  • Penilaian persyaratan administrasi dan teknis dilaksanakan dalam jangka waktu paling lama 1 (satu) tahun.
  • Dalam hal dokumen permohonan izin tapak belum memenuhi persyaratan administrasi dan/atau teknis, pemohon harus memperbaiki dan menyampaikan dokumen perbaikan kepada BAPETEN dalam jangka waktu paling lama 4 (empat) tahun sejak dokumen permohonan izin dikembalikan kepada pemohon.
  • Jika pemohon belum memperbaiki dokumen permohonan izin sampai berakhirnya jangka waktu maka pemohon harus melakukan evaluasi tapak ulang.

2.  Jangka Waktu Berlaku izin tapak: Izin tapak berlaku sejak tanggal diterbitkan sampai dengan diterbitkannya Persetujuan Pernyataan Pembebasan

BIAYA IZIN TAPAK

Dalam Peraturan Pemerintah No. 134 tahun 2000 tentang tarif atas jenis penerimaan bukan pajak yang berlaku pada Badan Pengawas Tenaga Nuklir, diatur mengenai biaya izin tapak yaitu sebagai berikut:

1. Reaktor Daya < 600 Mwe

  • Izin Multi Tahap       : Rp. 33.000.000,-
  • Izin Dua Tahap        : Rp. 33.000.000,- 

2. Reaktor Daya ≥ 600 Mwe

  • Izin Multi Tahap       : Rp. 49.500.000,-
  • Izin Dua Tahap        : Rp. 49.500.000,-

EVALUASI KESELAMATAN TERHADAP HASIL EVALUASI TAPAK

Tahap pertama yang memicu proses perizinan adalah pengajuan formal oleh pemohon izin kepada BAPETEN. Berdasarkan proses perizinan tersebut, setelah pengajuan formal oleh pemohon izin, review dan penilaian serta pembahasan berlangsung antara BAPETEN dan seluruh pihak terkait untuk mengidentifikasi cakupan dan tipe informasi yang diperlukan dalam rangka penilaian kelengkapan persyaratan perizinan untuk kegiatan perizinan tersebut. Pembahasan ini mencakup beberapa persyaratan yang tercantum dalam peraturan  yang berlaku.

Dalam melakukan evaluasi kecukupan keselamatan tapak dimana PLTN akan dibangun, beberapa aspek keselamatan dari akibat didirikannya/dioperasikannya PLTN yang harus diperhitungkan adalah:

a. Efek dari kejadian eksternal yang terjadi di dalam wilayah tapak, yang disebabkan oleh alam atau ulah manusia;

b. Karakteristik tapak dan lingkungannya yang dapat mempengaruhi perpindahan zat radioaktif yang lepas ke manusia dan lingkungan; dan

c. Kepadatan penduduk dan distribusi penduduk serta karakteristik lain dari zona eksternal yang mempengaruhi pelaksanaan tindakan penanggulangan keadaan darurat dan keperluan untuk mengevaluasi risiko terhadap individu dan penduduk.

Tapak dinyatakan tidak layak apabila ketiga aspek tidak dapat diterima dan kekurangannya tidak dapat dikompensasi oleh fitur disain, tindakan perlindungan tapak atau prosedur administrasi.

Menurut draft Peraturan Kepala BAPETEN tentang Ketentuan Keselamatan Evaluasi Tapak Reaktor Nuklir, kejadian luar yang harus dievaluasi adalah Gempa Bumi, Patahan Permukaan, bahaya vulkanik, Kejadian Meteorologi (ekstrim dan jarang terjadi), Banjir, Bahaya Geoteknik dan Kejadian Eksternal Ulah Manusia. Aspek parameter teknis yang dievaluasi adalah:

  • Gempa bumi yaitu yang berhubungan dengan kondisi geologi regional dan geoteknik dengan melakukan evaluasi sejarah kegempaan, pemantauan gempa, menentukan seismotektonik menggunakan gempa lokal dan bahaya-bahaya gempa yang mengakibatkan pergerakan tanah. Bahaya akibat gempa harus dikaji dengan memperhitungkan karakteristik seismotektonik baik lokal maupun regional dengan melakukan evaluasi bahaya seismik.
  • Aspek geologi berhubungan dengan Patahan Permukaan yaitu kemampuan patahan baik yang aktif maupun patahan yang tidak aktif serta memiliki potensi untuk bergerak.
  • Bahaya Vulkanik yaitu yang berhubungan dengan data aliran lava, lahar, abu vulkanik, gas sebagai produk gunung api di sekitar tapak.
  • Kejadian meteorologi yaitu yang berhubungan dengan pemantaun data kecepatan angina, hujan, temperature dan salju. Kejadian ekstrim dari meteorologi harus diketahui dengan mengumpulkan, menganalisis data yang akurat untuk menentukan ada tidaknya misalnya kilatan petir yang kuat, tornado, dan tropical cyclone. Kajian bahaya ini harus dilakukan berdasarkan kondisi meteorology yang paling ekstrim.
  • Banjir yaitu terutama yang dikontrol oleh kondisi cuaca dan daerah aliran sungai yang dapat mempengaruhi tingkat keamanan tapak. Evaluasi yang harus dilakukan terhadap banjir adalah akibat hujan, akibat gempa atau fenomena geologi sehingga menyebabkan banjir.
  • Geoteknik yaitu yang berhubungan dnegan evaluasi kestabilan lereng, runtuhan, amblesan, pengangkatan pelapisan ke permukaan, pembuburan, material fondasi yang meliputi kstabilan fondasi, aliran air tanah, sifat kimia air tanah.
  • Kejadian akibat ulah manusia yaitu kegiatan akibat manusia yang ekstrim yang berhubungan dengan data kecelakaan jalur penerbangan, ledakan pabrik kimia, industri berat, sumber bahaya lainnya seperti penyimpanan zat radioaktif, dan kesibukan transportasi yang mempengaruhi keberadaan tapak PLTN.

 PEMBAHASAN

Evaluasi keselamatan tapak telah dilakukan oleh konsultan NewJec dengan guidence dari IAEA. Guidence IAEA tersebut saat ini sudah di adopsi BAPETEN dalam peraturan tingkat Kepala BAPETEN.

Sejauh ini telah beberapa kali dilakukan riview terhadap evaluasi keselamatan Konsultan Newjec oleh IAEA, dan beberapa  hal belum terpenuhi.

BAPETEN saat ini sudah memiliki kesiapan yang cukup dalam melakukan evaluasi keselamatan terhadap permohonan izin tapak baik dari sisi peraturan, perizinan dan inspeksi.

Dari sisi peraturan, BAPETEN telah memiliki peraturan mulai dari tingkat Undang-undang, peraturan pemerintah dan peraturan kepala BAPETEN.

Dari sisi perizinan, BAPETEN telah menyiapkan standar evaluasi untuk permohonan izin tapak PLTN dan sedang menyiapkan standar evaluasi untuk permohonan izin konstruksi PLTN. Prosedur perizinan tapak PLTN pun telah dimiliki, sehingga pemohon izin tidak akan memiliki kendala dalam melakukan aplikasi izin.

Dari sisi inspeksi, BAPETEN telah menyiapkan pedoman untuk inspeksi tapak PLTN dan saat ini sedang mempersiapkan pedoman untuk inspeksi konstruksi PLTN.

Dari kesiapan BAPETEN tersebut, dapat dikatakan bahwa BAPETEN telah memiliki kesiapan yang cukup untuk menerima permohonan izin tapak. Dengan diberikannya izin tapak PLTN maka BAPETEN memberi jaminan bahwa pembangunan PLTN tidak akan membahayakan pekerja, masyarakat dan lingkungan.

KESIMPULAN

BAPETEN telah memiliki kesiapan yang cukup untuk menerima permohonan izin tapak. Dengan diberikannya izin tapak PLTN maka BAPETEN memberi jaminan bahwa pembangunan PLTN tidak akan membahayakan pekerja, masyarakat dan lingkungan.

DAFTAR PUSTAKA

  1. Undang-undang No. 10 tahun 1997 tentang Ketenaganukliran.
  2. Peraturan Pemerintah No. 43 tahun 2006 tentang Perizinan Reaktor Nuklir.
  3. Peraturan Pemerintah No. 134 tahun 2000 tentang tarif atas jenis penerimaan bukan pajak yang berlaku pada Badan Pengawas Tenaga Nuklir
  4. Draft Peraturan Kepala BAPETEN tentang Ketentuan Keselamatan Evaluasi Tapak Reaktor Nuklir.
  5. Prosedur Perizinan Reaktor Nuklir, Tahun 2006.
  6. Prosedur Evaluasi Permohonan Izin Tapak PLTN, Tahun 2006.
  7. Hasil kajian ITB tahun 2003.
Posted in Nuclear Licensing | Tagged , , | 4 Comments